//////////////////////////////////////////////////////////////////////////////////// // DCC-EX CommandStation-EX Please see https://DCC-EX.com // // This file is the main sketch for the Command Station. // // CONFIGURATION: // Configuration is normally performed by editing a file called config.h. // This file is NOT shipped with the code so that if you pull a later version // of the code, your configuration will not be overwritten. // // If you used the automatic installer program, config.h will have been created automatically. // // To obtain a starting copy of config.h please copy the file config.example.h which is // shipped with the code and may be updated as new features are added. // // If config.h is not found, config.example.h will be used with all defaults. //////////////////////////////////////////////////////////////////////////////////// #if __has_include ( "config.h") #include "config.h" #else #warning config.h not found. Using defaults from config.example.h #include "config.example.h" #endif /* * © 2020,2021 Chris Harlow, Harald Barth, David Cutting, * Fred Decker, Gregor Baues, Anthony W - Dayton All rights reserved. * * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "DCCEX.h" // Create a serial command parser for the USB connection, // This supports JMRI or manual diagnostics and commands // to be issued from the USB serial console. DCCEXParser serialParser; void setup() { // The main sketch has responsibilities during setup() // Responsibility 1: Start the usb connection for diagnostics // This is normally Serial but uses SerialUSB on a SAMD processor Serial.begin(115200); CONDITIONAL_LCD_START { // This block is still executed for DIAGS if LCD not in use LCD(0,F("DCC++ EX v%S"),F(VERSION)); LCD(1,F("Starting")); } // Start the WiFi interface on a MEGA, Uno cannot currently handle WiFi #if WIFI_ON WifiInterface::setup(WIFI_SERIAL_LINK_SPEED, F(WIFI_SSID), F(WIFI_PASSWORD), F(WIFI_HOSTNAME), IP_PORT, WIFI_CHANNEL); #endif // WIFI_ON #if ETHERNET_ON EthernetInterface::setup(); #endif // ETHERNET_ON // Responsibility 3: Start the DCC engine. // Note: this provides DCC with two motor drivers, main and prog, which handle the motor shield(s) // Standard supported devices have pre-configured macros but custome hardware installations require // detailed pin mappings and may also require modified subclasses of the MotorDriver to implement specialist logic. // STANDARD_MOTOR_SHIELD, POLOLU_MOTOR_SHIELD, FIREBOX_MK1, FIREBOX_MK1S are pre defined in MotorShields.h DCC::begin(MOTOR_SHIELD_TYPE); #if defined(RMFT_ACTIVE) RMFT::begin(); #endif #if __has_include ( "mySetup.h") #define SETUP(cmd) serialParser.parse(F(cmd)) #include "mySetup.h" #undef SETUP #endif LCD(1,F("Ready")); } void loop() { // The main sketch has responsibilities during loop() // Responsibility 1: Handle DCC background processes // (loco reminders and power checks) DCC::loop(); // Responsibility 2: handle any incoming commands on USB connection serialParser.loop(Serial); // Responsibility 3: Optionally handle any incoming WiFi traffic #if WIFI_ON WifiInterface::loop(); #endif #if ETHERNET_ON EthernetInterface::loop(); #endif #if defined(RMFT_ACTIVE) RMFT::loop(); #endif LCDDisplay::loop(); // ignored if LCD not in use // Optionally report any decrease in memory (will automatically trigger on first call) #if ENABLE_FREE_MEM_WARNING static int ramLowWatermark = 32767; // replaced on first loop int freeNow = updateMinimumFreeMemory(); if (freeNow < ramLowWatermark) { ramLowWatermark = freeNow; LCD(2,F("Free RAM=%5db"), ramLowWatermark); } #endif // Optionally report average and maximum loop time #if ENABLE_LOOP_MEASUREMENT static unsigned long startTime = micros(); static unsigned int maxElapsed = 0; static unsigned long totalElapsed = 0; static unsigned long count = 0; static unsigned long lastOutput = millis(); unsigned long endTime = micros(); unsigned int elapsed = endTime - startTime; if (elapsed > maxElapsed) maxElapsed = elapsed; count++; totalElapsed += elapsed; unsigned long currentMillis = millis(); if (currentMillis - lastOutput >= 5000) { DIAG(F("\nLoop: max=%dus ave=%dus\n"), maxElapsed, totalElapsed/count); maxElapsed = 0; totalElapsed = 0; count = 0; lastOutput = currentMillis; } startTime = micros(); #endif }