/* * © 2020, Chris Harlow. All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include #include "config.h" #include "defines.h" #include "MotorDriver.h" #include "DCCTimer.h" #include "DIAG.h" #if defined(ARDUINO_ARCH_ESP32) #include #define pinToADC1Channel(X) (adc1_channel_t)(((X) > 35) ? (X)-36 : (X)-28) #endif bool MotorDriver::usePWM=false; bool MotorDriver::commonFaultPin=false; MotorDriver::MotorDriver(byte power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin, byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin, driverType dt) { dtype = dt; powerPin=power_pin; getFastPin(F("POWER"),powerPin,fastPowerPin); pinMode(powerPin, OUTPUT); if (dtype & (RMT_MAIN | RMT_PROG)) { signalPin=signal_pin; /* #if defined(ARDUINO_ARCH_ESP32) //rmtChannel = new RMTChannel(signalPin, 0, PREAMBLE_BITS_MAIN, true); // true: isMain rmtChannel = new RMTChannel(signalPin, dtype == RMT_MAIN); // true: isMain #endif */ dualSignal=false; } else if (dtype & (TIMER_MAIN | TIMER_PROG)) { signalPin=signal_pin; getFastPin(F("SIG"),signalPin,fastSignalPin); pinMode(signalPin, OUTPUT); signalPin2=signal_pin2; if (signalPin2!=UNUSED_PIN) { dualSignal=true; getFastPin(F("SIG2"),signalPin2,fastSignalPin2); pinMode(signalPin2, OUTPUT); } else { dualSignal=false; } } brakePin=brake_pin; if (brake_pin!=UNUSED_PIN){ invertBrake=brake_pin < 0; brakePin=invertBrake ? 0-brake_pin : brake_pin; getFastPin(F("BRAKE"),brakePin,fastBrakePin); pinMode(brakePin, OUTPUT); setBrake(false); } else brakePin=UNUSED_PIN; currentPin=current_pin; if (currentPin!=UNUSED_PIN) { #if defined(ARDUINO_ARCH_ESP32) pinMode(currentPin, ANALOG); adc1_config_width(ADC_WIDTH_BIT_12); adc1_config_channel_atten(pinToADC1Channel(currentPin),ADC_ATTEN_DB_11); senseOffset = adc1_get_raw(pinToADC1Channel(currentPin)); #else pinMode(currentPin, INPUT); senseOffset=analogRead(currentPin); // value of sensor at zero current #endif } faultPin=fault_pin; if (faultPin != UNUSED_PIN) { getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin); pinMode(faultPin, INPUT); } senseFactor=sense_factor; tripMilliamps=trip_milliamps; rawCurrentTripValue=(int)(trip_milliamps / sense_factor); if (currentPin==UNUSED_PIN) DIAG(F("MotorDriver ** WARNING ** No current or short detection")); else DIAG(F("MotorDriver currentPin=A%d, senseOffset=%d, rawCurentTripValue(relative to offset)=%d"), currentPin-A0, senseOffset,rawCurrentTripValue); } bool MotorDriver::isPWMCapable() { return (!dualSignal) && DCCTimer::isPWMPin(signalPin); } void MotorDriver::setPower(bool on) { if (on) { // toggle brake before turning power on - resets overcurrent error // on the Pololu board if brake is wired to ^D2. setBrake(true); setBrake(false); setHIGH(fastPowerPin); } else setLOW(fastPowerPin); } // setBrake applies brake if on == true. So to get // voltage from the motor bride one needs to do a // setBrake(false). // If the brakePin is negative that means the sense // of the brake pin on the motor bridge is inverted // (HIGH == release brake) and setBrake does // compensate for that. // void MotorDriver::setBrake(bool on) { if (brakePin == UNUSED_PIN) return; if (on ^ invertBrake) setHIGH(fastBrakePin); else setLOW(fastBrakePin); } void IRAM_ATTR MotorDriver::setSignal( bool high) { if (usePWM) { DCCTimer::setPWM(signalPin,high); } else { if (high) { setHIGH(fastSignalPin); if (dualSignal) setLOW(fastSignalPin2); } else { setLOW(fastSignalPin); if (dualSignal) setHIGH(fastSignalPin2); } } } #if defined(ARDUINO_TEENSY32) || defined(ARDUINO_TEENSY35)|| defined(ARDUINO_TEENSY36) volatile unsigned int overflow_count=0; #endif bool MotorDriver::canMeasureCurrent() { return currentPin!=UNUSED_PIN; } /* * Return the current reading as pin reading 0 to 1023. If the fault * pin is activated return a negative current to show active fault pin. * As there is no -0, create a little and return -1 in that case. * * senseOffset handles the case where a shield returns values above or below * a central value depending on direction. */ int MotorDriver::getCurrentRaw() { if (currentPin==UNUSED_PIN) return 0; int current; #if defined(ARDUINO_TEENSY40) || defined(ARDUINO_TEENSY41) bool irq = disableInterrupts(); current = analogRead(currentPin)-senseOffset; enableInterrupts(irq); #elif defined(ARDUINO_TEENSY32) || defined(ARDUINO_TEENSY35)|| defined(ARDUINO_TEENSY36) unsigned char sreg_backup; sreg_backup = SREG; /* save interrupt enable/disable state */ cli(); current = analogRead(currentPin)-senseOffset; overflow_count = 0; SREG = sreg_backup; /* restore interrupt state */ #elif defined(ARDUINO_ARCH_ESP32) current = adc1_get_raw(pinToADC1Channel(currentPin))-senseOffset; #else current = analogRead(currentPin)-senseOffset; #endif if (current<0) current=0-current; if ((faultPin != UNUSED_PIN) && isLOW(fastFaultPin) && isHIGH(fastPowerPin)) return (current == 0 ? -1 : -current); return current; // IMPORTANT: This function can be called in Interrupt() time within the 56uS timer // The default analogRead takes ~100uS which is catastrphic // so DCCTimer has set the sample time to be much faster. } unsigned int MotorDriver::raw2mA( int raw) { return (unsigned int)(raw * senseFactor); } int MotorDriver::mA2raw( unsigned int mA) { return (int)(mA / senseFactor); } void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) { // DIAG(F("MotorDriver %S Pin=%d,"),type,pin); (void) type; // avoid compiler warning if diag not used above. PORTTYPE port = digitalPinToPort(pin); if (input) result.inout = portInputRegister(port); else result.inout = portOutputRegister(port); result.maskHIGH = digitalPinToBitMask(pin); result.maskLOW = ~result.maskHIGH; // DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH); } bool MotorDriver::schedulePacket(dccPacket packet) { if(!rmtChannel) { DIAG(F("no rmt Channel")); return true; // fake success if functionality is not there } outQueue.push(packet); uint16_t size = outQueue.size(); if (size > 10) { DIAG(F("Warning: outQueue %d > 10"),size); } return true; } void MotorDriver::loop() { int r; if (rmtChannel && !outQueue.empty()) { r = rmtChannel->RMTfillData(outQueue.front()); if (r == 0) { DIAG(F("r=OK")); outQueue.pop(); } else DIAG(F("r=%d"), r); } } MotorDriverContainer::MotorDriverContainer(const FSH * motorShieldName, MotorDriver *m0, MotorDriver *m1, MotorDriver *m2, MotorDriver *m3, MotorDriver *m4, MotorDriver *m5, MotorDriver *m6, MotorDriver *m7) { // THIS AUTOMATIC DOES NOT WORK YET. TIMER_MAIN AND TIMER_PROG required in CONSTRUCTOR // AND CAN NOT BE ADDED LATER if (m0) { if (m0->type() == TYPE_UNKNOWN) m0->setType(TIMER_MAIN); mD.push_back(m0); } if (m1) { if (m1->type() == TYPE_UNKNOWN) m1->setType(TIMER_PROG); mD.push_back(m1); } if (m2) mD.push_back(m2); if (m3) mD.push_back(m3); if (m4) mD.push_back(m4); if (m5) mD.push_back(m5); if (m6) mD.push_back(m6); if (m7) mD.push_back(m7); shieldName = (FSH *)motorShieldName; } void MotorDriverContainer::loop() { // loops over MotorDrivers which have loop tasks if (mD.empty()) return; for(const auto& d: mD) if (d->type() & (RMT_MAIN | RMT_PROG)) d->loop(); } std::vector MotorDriverContainer::getDriverType(driverType t) { std::vector v; for(const auto& d: mD){ if (d->type() & t) v.push_back(d); } return v; } MotorDriverContainer MotorDriverContainer::mDC(MOTOR_SHIELD_TYPE);