/* * © 2020, Chris Harlow. All rights reserved. * © 2020, Harald Barth * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "DIAG.h" #include "DCC.h" #include "DCCWaveform.h" #include "EEStore.h" #include "GITHUB_SHA.h" #include "version.h" // This module is responsible for converting API calls into // messages to be sent to the waveform generator. // It has no visibility of the hardware, timers, interrupts // nor of the waveform issues such as preambles, start bits checksums or cutouts. // // Nor should it have to deal with JMRI responsess other than the OK/FAIL // or cv value returned. I will move that back to the JMRI interface later // // The interface to the waveform generator is narrowed down to merely: // Scheduling a message on the prog or main track using a function // Obtaining ACKs from the prog track using a function // There are no volatiles here. const byte FN_GROUP_1=0x01; const byte FN_GROUP_2=0x02; const byte FN_GROUP_3=0x04; const byte FN_GROUP_4=0x08; const byte FN_GROUP_5=0x10; FSH* DCC::shieldName=NULL; void DCC::begin(const FSH* motorShieldName, MotorDriver * mainDriver, MotorDriver* progDriver, byte timerNumber) { shieldName=(FSH*)motorShieldName; DIAG(F("\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA)); // Load stuff from EEprom (void)EEPROM; // tell compiler not to warn this is unused EEStore::init(); DCCWaveform::begin(mainDriver,progDriver, timerNumber); } void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) { byte speedCode = (tSpeed & 0x7F) + tDirection * 128; setThrottle2(cab, speedCode); // retain speed for loco reminders updateLocoReminder(cab, speedCode ); } void DCC::setThrottle2( uint16_t cab, byte speedCode) { uint8_t b[4]; uint8_t nB = 0; // DIAG(F("\nsetSpeedInternal %d %x"),cab,speedCode); if (cab > 127) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); b[nB++] = SET_SPEED; // 128-step speed control byte b[nB++] = speedCode; // for encoding see setThrottle DCCWaveform::mainTrack.schedulePacket(b, nB, 0); } void DCC::setFunctionInternal(int cab, byte byte1, byte byte2) { // DIAG(F("\nsetFunctionInternal %d %x %x"),cab,byte1,byte2); byte b[4]; byte nB = 0; if (cab > 127) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); if (byte1!=0) b[nB++] = byte1; b[nB++] = byte2; DCCWaveform::mainTrack.schedulePacket(b, nB, 3); // send packet 3 times } uint8_t DCC::getThrottleSpeed(int cab) { int reg=lookupSpeedTable(cab); if (reg<0) return -1; return speedTable[reg].speedCode & 0x7F; } bool DCC::getThrottleDirection(int cab) { int reg=lookupSpeedTable(cab); if (reg<0) return false ; return (speedTable[reg].speedCode & 0x80) !=0; } // Set function to value on or off void DCC::setFn( int cab, byte functionNumber, bool on) { if (cab<=0 || functionNumber>28) return; int reg = lookupSpeedTable(cab); if (reg<0) return; // Take care of functions: // Set state of function unsigned long funcmask = (1UL<28) return funcstate; int reg = lookupSpeedTable(cab); if (reg<0) return funcstate; // Take care of functions: // Imitate how many command stations do it: Button press is // toggle but for F2 where it is momentary unsigned long funcmask = (1UL<28) return -1; // unknown int reg = lookupSpeedTable(cab); if (reg<0) return -1; unsigned long funcmask = (1UL< 127) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03 b[nB++] = cv2(cv); b[nB++] = bValue; DCCWaveform::mainTrack.schedulePacket(b, nB, 4); } void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) { byte b[5]; byte nB = 0; bValue = bValue % 2; bNum = bNum % 8; if (cab > 127) b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address b[nB++] = lowByte(cab); b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03 b[nB++] = cv2(cv); b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum; DCCWaveform::mainTrack.schedulePacket(b, nB, 4); } void DCC::setProgTrackSyncMain(bool on) { DCCWaveform::progTrackSyncMain=on; } void DCC::setProgTrackBoost(bool on) { DCCWaveform::progTrackBoosted=on; } FSH* DCC::getMotorShieldName() { return shieldName; } const ackOp PROGMEM WRITE_BIT0_PROG[] = { BASELINE, W0,WACK, V0, WACK, // validate bit is 0 ITC1, // if acked, callback(1) FAIL // callback (-1) }; const ackOp PROGMEM WRITE_BIT1_PROG[] = { BASELINE, W1,WACK, V1, WACK, // validate bit is 1 ITC1, // if acked, callback(1) FAIL // callback (-1) }; const ackOp PROGMEM VERIFY_BIT0_PROG[] = { BASELINE, V0, WACK, // validate bit is 0 ITC0, // if acked, callback(0) V1, WACK, // validate bit is 1 ITC1, FAIL // callback (-1) }; const ackOp PROGMEM VERIFY_BIT1_PROG[] = { BASELINE, V1, WACK, // validate bit is 1 ITC1, // if acked, callback(1) V0, WACK, ITC0, FAIL // callback (-1) }; const ackOp PROGMEM READ_BIT_PROG[] = { BASELINE, V1, WACK, // validate bit is 1 ITC1, // if acked, callback(1) V0, WACK, // validate bit is zero ITC0, // if acked callback 0 FAIL // bit not readable }; const ackOp PROGMEM WRITE_BYTE_PROG[] = { BASELINE, WB,WACK, // Write VB,WACK, // validate byte ITC1, // if ok callback (1) FAIL // callback (-1) }; const ackOp PROGMEM VERIFY_BYTE_PROG[] = { BASELINE, VB,WACK, // validate byte ITCB, // if ok callback value STARTMERGE, //clear bit and byte values ready for merge pass // each bit is validated against 0 and the result inverted in MERGE // this is because there tend to be more zeros in cv values than ones. // There is no need for one validation as entire byte is validated at the end V0, WACK, MERGE, // read and merge first tested bit (7) ITSKIP, // do small excursion if there was no ack SETBIT,(ackOp)7, V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7) SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6) SKIPTARGET, V0, WACK, MERGE, // read and merge second tested bit (6) V0, WACK, MERGE, // read and merge third tested bit (5) ... V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, ITCB, // verify merged byte and return it if acked ok FAIL }; const ackOp PROGMEM READ_CV_PROG[] = { BASELINE, STARTMERGE, //clear bit and byte values ready for merge pass // each bit is validated against 0 and the result inverted in MERGE // this is because there tend to be more zeros in cv values than ones. // There is no need for one validation as entire byte is validated at the end V0, WACK, MERGE, // read and merge first tested bit (7) ITSKIP, // do small excursion if there was no ack SETBIT,(ackOp)7, V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7) SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6) SKIPTARGET, V0, WACK, MERGE, // read and merge second tested bit (6) V0, WACK, MERGE, // read and merge third tested bit (5) ... V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, ITCB, // verify merged byte and return it if acked ok FAIL }; // verification failed const ackOp PROGMEM LOCO_ID_PROG[] = { BASELINE, SETCV,(ackOp)29, SETBIT,(ackOp)5, V0, WACK, ITSKIP, // Skip to SKIPTARGET if bit 5 of CV29 is zero V1, WACK, NAKFAIL, // fast fail if no loco on track // Long locoid SETCV, (ackOp)17, // CV 17 is part of locoid STARTMERGE, V0, WACK, MERGE, // read and merge bit 1 etc V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok STASHLOCOID, // keep stashed cv 17 for later // Read 2nd part from CV 18 SETCV, (ackOp)18, STARTMERGE, V0, WACK, MERGE, // read and merge bit 1 etc V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok COMBINELOCOID, // Combile byte with stash to make long locoid and callback // ITSKIP Skips to here if CV 29 bit 5 was zero. so read CV 1 and return that SKIPTARGET, SETCV, (ackOp)1, STARTMERGE, V0, WACK, MERGE, // read and merge bit 1 etc V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, V0, WACK, MERGE, VB, WACK, ITCB, // verify merged byte and callback FAIL }; // On the following prog-track functions blocking defaults to false. // blocking=true forces the API to block, waiting for the response and invoke the callback BEFORE returning. // During that wait, other parts of the system will be unresponsive. // blocking =false means the callback will be called some time after the API returns (typically a few tenths of a second) // but that would be very inconvenient in a Wifi situaltion where the stream becomes // unuavailable immediately after the API rerturns. void DCC::writeCVByte(int cv, byte byteValue, ACK_CALLBACK callback, bool blocking) { ackManagerSetup(cv, byteValue, WRITE_BYTE_PROG, callback, blocking); } void DCC::writeCVBit(int cv, byte bitNum, bool bitValue, ACK_CALLBACK callback, bool blocking) { if (bitNum >= 8) callback(-1); else ackManagerSetup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback, blocking); } void DCC::verifyCVByte(int cv, byte byteValue, ACK_CALLBACK callback, bool blocking) { ackManagerSetup(cv, byteValue, VERIFY_BYTE_PROG, callback, blocking); } void DCC::verifyCVBit(int cv, byte bitNum, bool bitValue, ACK_CALLBACK callback, bool blocking) { if (bitNum >= 8) callback(-1); else ackManagerSetup(cv, bitNum, bitValue?VERIFY_BIT1_PROG:VERIFY_BIT0_PROG, callback, blocking); } void DCC::readCVBit(int cv, byte bitNum, ACK_CALLBACK callback, bool blocking) { if (bitNum >= 8) callback(-1); else ackManagerSetup(cv, bitNum,READ_BIT_PROG, callback, blocking); } void DCC::readCV(int cv, ACK_CALLBACK callback, bool blocking) { ackManagerSetup(cv, 0,READ_CV_PROG, callback, blocking); } void DCC::getLocoId(ACK_CALLBACK callback, bool blocking) { ackManagerSetup(0,0, LOCO_ID_PROG, callback, blocking); } void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco int reg=lookupSpeedTable(cab); if (reg>=0) speedTable[reg].loco=0; } void DCC::forgetAllLocos() { // removes all speed reminders for (int i=0;i=MAX_LOCOS) slot-=MAX_LOCOS; if (speedTable[slot].loco > 0) { // have found the next loco to remind // issueReminder will return true if this loco is completed (ie speed and functions) if (issueReminder(slot)) nextLoco=slot+1; return; } } } bool DCC::issueReminder(int reg) { unsigned long functions=speedTable[reg].functions; int loco=speedTable[reg].loco; byte flags=speedTable[reg].groupFlags; switch (loopStatus) { case 0: // DIAG(F("\nReminder %d speed %d"),loco,speedTable[reg].speedCode); setThrottle2(loco, speedTable[reg].speedCode); break; case 1: // remind function group 1 (F0-F4) if (flags & FN_GROUP_1) setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4)); // 100D DDDD break; case 2: // remind function group 2 F5-F8 if (flags & FN_GROUP_2) setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F)); // 1011 DDDD break; case 3: // remind function group 3 F9-F12 if (flags & FN_GROUP_3) setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F)); // 1010 DDDD break; case 4: // remind function group 4 F13-F20 if (flags & FN_GROUP_4) setFunctionInternal(loco,222, ((functions>>13)& 0xFF)); flags&= ~FN_GROUP_4; // dont send them again break; case 5: // remind function group 5 F21-F28 if (flags & FN_GROUP_5) setFunctionInternal(loco,223, ((functions>>21)& 0xFF)); flags&= ~FN_GROUP_5; // dont send them again break; } loopStatus++; // if we reach status 6 then this loco is done so // reset status to 0 for next loco and return true so caller // moves on to next loco. if (loopStatus>5) loopStatus=0; return loopStatus==0; } ///// Private helper functions below here ///////////////////// byte DCC::cv1(byte opcode, int cv) { cv--; return (highByte(cv) & (byte)0x03) | opcode; } byte DCC::cv2(int cv) { cv--; return lowByte(cv); } int DCC::lookupSpeedTable(int locoId) { // determine speed reg for this loco int firstEmpty = MAX_LOCOS; int reg; for (reg = 0; reg < MAX_LOCOS; reg++) { if (speedTable[reg].loco == locoId) break; if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg; } if (reg == MAX_LOCOS) reg = firstEmpty; if (reg >= MAX_LOCOS) { DIAG(F("\nToo many locos\n")); return -1; } if (reg==firstEmpty){ speedTable[reg].loco = locoId; speedTable[reg].speedCode=128; // default direction forward speedTable[reg].groupFlags=0; speedTable[reg].functions=0; } return reg; } void DCC::updateLocoReminder(int loco, byte speedCode) { if (loco==0) { // broadcast stop/estop but dont change direction for (int reg = 0; reg < MAX_LOCOS; reg++) { speedTable[reg].speedCode = (speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f); } return; } // determine speed reg for this loco int reg=lookupSpeedTable(loco); if (reg>=0) speedTable[reg].speedCode = speedCode; } DCC::LOCO DCC::speedTable[MAX_LOCOS]; int DCC::nextLoco = 0; //ACK MANAGER ackOp const * DCC::ackManagerProg; byte DCC::ackManagerByte; byte DCC::ackManagerStash; int DCC::ackManagerCv; byte DCC::ackManagerBitNum; bool DCC::ackReceived; ACK_CALLBACK DCC::ackManagerCallback; void DCC::ackManagerSetup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback, bool blocking) { ackManagerCv = cv; ackManagerProg = program; ackManagerByte = byteValueOrBitnum; ackManagerBitNum=byteValueOrBitnum; ackManagerCallback = callback; if (blocking) ackManagerLoop(blocking); } const byte RESET_MIN=8; // tuning of reset counter before sending message // checkRessets return true if the caller should yield back to loop and try later. bool DCC::checkResets(bool blocking, uint8_t numResets) { if (blocking) { // must block waiting for restest to be issued while(DCCWaveform::progTrack.sentResetsSincePacket < numResets); return false; // caller need not yield } return DCCWaveform::progTrack.sentResetsSincePacket < numResets; } void DCC::ackManagerLoop(bool blocking) { while (ackManagerProg) { byte opcode=pgm_read_byte_near(ackManagerProg); // breaks from this switch will step to next prog entry // returns from this switch will stay on same entry // (typically waiting for a reset counter or ACK waiting, or when all finished.) // if blocking then we must ONLY return AFTER callback issued switch (opcode) { case BASELINE: if (DCCWaveform::progTrack.getPowerMode() == POWERMODE::OFF) { if (Diag::ACK) DIAG(F("\nAuto Prog power on")); DCCWaveform::progTrack.setPowerMode(POWERMODE::ON); DCCWaveform::progTrack.sentResetsSincePacket = 0; DCCWaveform::progTrack.autoPowerOff=true; if (!blocking) return; } if (checkResets(blocking, DCCWaveform::progTrack.autoPowerOff ? 20 : 3)) return; DCCWaveform::progTrack.setAckBaseline(); break; case W0: // write 0 bit case W1: // write 1 bit { if (checkResets(blocking, RESET_MIN)) return; if (Diag::ACK) DIAG(F("\nW%d cv=%d bit=%d"),opcode==W1, ackManagerCv,ackManagerBitNum); byte instruction = WRITE_BIT | (opcode==W1 ? BIT_ON : BIT_OFF) | ackManagerBitNum; byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction }; DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS); DCCWaveform::progTrack.setAckPending(); } break; case WB: // write byte { if (checkResets(blocking, RESET_MIN)) return; if (Diag::ACK) DIAG(F("\nWB cv=%d value=%d"),ackManagerCv,ackManagerByte); byte message[] = {cv1(WRITE_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte}; DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS); DCCWaveform::progTrack.setAckPending(); } break; case VB: // Issue validate Byte packet { if (checkResets(blocking, RESET_MIN)) return; if (Diag::ACK) DIAG(F("\nVB cv=%d value=%d"),ackManagerCv,ackManagerByte); byte message[] = { cv1(VERIFY_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte}; DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS); DCCWaveform::progTrack.setAckPending(); } break; case V0: case V1: // Issue validate bit=0 or bit=1 packet { if (checkResets(blocking, RESET_MIN)) return; if (Diag::ACK) DIAG(F("\nV%d cv=%d bit=%d"),opcode==V1, ackManagerCv,ackManagerBitNum); byte instruction = VERIFY_BIT | (opcode==V0?BIT_OFF:BIT_ON) | ackManagerBitNum; byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction }; DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS); DCCWaveform::progTrack.setAckPending(); } break; case WACK: // wait for ack (or absence of ack) { byte ackState=2; // keep polling if (blocking) { while(ackState==2) ackState=DCCWaveform::progTrack.getAck(); } else { ackState=DCCWaveform::progTrack.getAck(); if (ackState==2) return; // keep polling } ackReceived=ackState==1; break; // we have a genuine ACK result } case ITC0: case ITC1: // If True Callback(0 or 1) (if prevous WACK got an ACK) if (ackReceived) { ackManagerProg = NULL; // all done now callback(opcode==ITC0?0:1); return; } break; case ITCB: // If True callback(byte) if (ackReceived) { ackManagerProg = NULL; // all done now callback(ackManagerByte); return; } break; case NAKFAIL: // If nack callback(-1) if (!ackReceived) { ackManagerProg = NULL; // all done now callback(-1); return; } break; case FAIL: // callback(-1) ackManagerProg = NULL; callback(-1); return; case STARTMERGE: ackManagerBitNum=7; ackManagerByte=0; break; case MERGE: // Merge previous Validate zero wack response with byte value and update bit number (use for reading CV bytes) ackManagerByte <<= 1; // ackReceived means bit is zero. if (!ackReceived) ackManagerByte |= 1; ackManagerBitNum--; break; case SETBIT: ackManagerProg++; ackManagerBitNum=pgm_read_byte_near(ackManagerProg); break; case SETCV: ackManagerProg++; ackManagerCv=pgm_read_byte_near(ackManagerProg); break; case STASHLOCOID: ackManagerStash=ackManagerByte; // stash value from CV17 break; case COMBINELOCOID: // ackManagerStash is cv17, ackManagerByte is CV 18 ackManagerProg=NULL; callback( ackManagerByte + ((ackManagerStash - 192) << 8)); return; case ITSKIP: if (!ackReceived) break; // SKIP opcodes until SKIPTARGET found while (opcode!=SKIPTARGET) { ackManagerProg++; opcode=pgm_read_byte_near(ackManagerProg); } break; case SKIPTARGET: break; default: DIAG(F("\n!! ackOp %d FAULT!!"),opcode); ackManagerProg=NULL; callback( -1); return; } // end of switch ackManagerProg++; } } void DCC::callback(int value) { if (DCCWaveform::progTrack.autoPowerOff) { if (Diag::ACK) DIAG(F("\nAuto Prog power off")); DCCWaveform::progTrack.doAutoPowerOff(); } if (Diag::ACK) DIAG(F("\nCallback(%d)\n"),value); (ackManagerCallback)( value); } void DCC::displayCabList(Print * stream) { int used=0; for (int reg = 0; reg < MAX_LOCOS; reg++) { if (speedTable[reg].loco>0) { used ++; StringFormatter::send(stream,F("\ncab=%d, speed=%d, dir=%c "), speedTable[reg].loco, speedTable[reg].speedCode & 0x7f,(speedTable[reg].speedCode & 0x80) ? 'F':'R'); } } StringFormatter::send(stream,F("\nUsed=%d, max=%d\n"),used,MAX_LOCOS); }