/* * © 2022 Paul M Antoine * © 2023, Neil McKechnie * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #ifndef I2CMANAGER_SAMD_H #define I2CMANAGER_SAMD_H #include #include "I2CManager.h" //#include //#include #include /*************************************************************************** * Interrupt handler. * IRQ handler for SERCOM3 which is the default I2C definition for Arduino Zero * compatible variants such as the Sparkfun SAMD21 Dev Breakout etc. * Later we may wish to allow use of an alternate I2C bus, or more than one I2C * bus on the SAMD architecture ***************************************************************************/ #if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_SAMD_ZERO) void SERCOM3_Handler() { I2CManagerClass::handleInterrupt(); } #endif // Assume SERCOM3 for now - default I2C bus on Arduino Zero and variants of same Sercom *s = SERCOM3; /*************************************************************************** * Set I2C clock speed register. This should only be called outside of * a transmission. The I2CManagerClass::_setClock() function ensures * that it is only called at the beginning of an I2C transaction. ***************************************************************************/ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) { // Calculate a rise time appropriate to the requested bus speed int t_rise; if (i2cClockSpeed < 200000L) { i2cClockSpeed = 100000L; t_rise = 1000; } else if (i2cClockSpeed < 800000L) { i2cClockSpeed = 400000L; t_rise = 300; } else if (i2cClockSpeed < 1200000L) { i2cClockSpeed = 1000000L; t_rise = 120; } else { i2cClockSpeed = 100000L; t_rise = 1000; } // Wait while the bus is busy while (s->I2CM.STATUS.bit.BUSSTATE != 0x1); // Disable the I2C master mode and wait for sync s->I2CM.CTRLA.bit.ENABLE = 0 ; while (s->I2CM.SYNCBUSY.bit.ENABLE != 0); // Calculate baudrate - using a rise time appropriate for the speed s->I2CM.BAUD.bit.BAUD = SystemCoreClock / (2 * i2cClockSpeed) - 5 - (((SystemCoreClock / 1000000) * t_rise) / (2 * 1000)); // Enable the I2C master mode and wait for sync s->I2CM.CTRLA.bit.ENABLE = 1 ; while (s->I2CM.SYNCBUSY.bit.ENABLE != 0); // Setting bus idle mode and wait for sync s->I2CM.STATUS.bit.BUSSTATE = 1 ; while (s->I2CM.SYNCBUSY.bit.SYSOP != 0); } /*************************************************************************** * Initialise I2C registers. ***************************************************************************/ void I2CManagerClass::I2C_init() { //Setting clock GCLK->CLKCTRL.reg = GCLK_CLKCTRL_ID(GCM_SERCOM3_CORE) | // Generic Clock 0 (SERCOM3) GCLK_CLKCTRL_GEN_GCLK0 | // Generic Clock Generator 0 is source GCLK_CLKCTRL_CLKEN ; /* Wait for peripheral clock synchronization */ while ( GCLK->STATUS.reg & GCLK_STATUS_SYNCBUSY ); // Software reset the SERCOM s->I2CM.CTRLA.bit.SWRST = 1; //Wait both bits Software Reset from CTRLA and SYNCBUSY are equal to 0 while(s->I2CM.CTRLA.bit.SWRST || s->I2CM.SYNCBUSY.bit.SWRST); // Set master mode and enable SCL Clock Stretch mode (stretch after ACK bit) s->I2CM.CTRLA.reg = SERCOM_I2CM_CTRLA_MODE( I2C_MASTER_OPERATION )/* | SERCOM_I2CM_CTRLA_SCLSM*/ ; // Enable Smart mode (but not Quick Command) s->I2CM.CTRLB.reg = SERCOM_I2CM_CTRLB_SMEN; #if defined(I2C_USE_INTERRUPTS) // Setting NVIC NVIC_EnableIRQ(SERCOM3_IRQn); NVIC_SetPriority (SERCOM3_IRQn, SERCOM_NVIC_PRIORITY); // Match default SERCOM priorities // NVIC_SetPriority (SERCOM3_IRQn, 0); // Set highest priority // Enable all interrupts s->I2CM.INTENSET.reg = SERCOM_I2CM_INTENSET_MB | SERCOM_I2CM_INTENSET_SB | SERCOM_I2CM_INTENSET_ERROR; #endif // Calculate baudrate and set default rate for now s->I2CM.BAUD.bit.BAUD = SystemCoreClock / ( 2 * I2C_FREQ) - 7 / (2 * 1000); // Enable the I2C master mode and wait for sync s->I2CM.CTRLA.bit.ENABLE = 1 ; while (s->I2CM.SYNCBUSY.bit.ENABLE != 0); // Setting bus idle mode and wait for sync s->I2CM.STATUS.bit.BUSSTATE = 1 ; while (s->I2CM.SYNCBUSY.bit.SYSOP != 0); // Set SDA/SCL pins as outputs and enable pullups, at present we assume these are // the default ones for SERCOM3 (see assumption above) pinPeripheral(PIN_WIRE_SDA, g_APinDescription[PIN_WIRE_SDA].ulPinType); pinPeripheral(PIN_WIRE_SCL, g_APinDescription[PIN_WIRE_SCL].ulPinType); // Enable the SCL and SDA pins on the sercom: includes increased driver strength, // pull-up resistors and pin multiplexer PORT->Group[g_APinDescription[PIN_WIRE_SCL].ulPort].PINCFG[g_APinDescription[PIN_WIRE_SCL].ulPin].reg = PORT_PINCFG_DRVSTR | PORT_PINCFG_PULLEN | PORT_PINCFG_PMUXEN; PORT->Group[g_APinDescription[PIN_WIRE_SDA].ulPort].PINCFG[g_APinDescription[PIN_WIRE_SDA].ulPin].reg = PORT_PINCFG_DRVSTR | PORT_PINCFG_PULLEN | PORT_PINCFG_PMUXEN; } /*************************************************************************** * Initiate a start bit for transmission. ***************************************************************************/ void I2CManagerClass::I2C_sendStart() { // Set counters here in case this is a retry. bytesToSend = currentRequest->writeLen; bytesToReceive = currentRequest->readLen; txCount = 0; rxCount = 0; // On a single-master I2C bus, the start bit won't be sent until the bus // state goes to IDLE so we can request it without waiting. On a // multi-master bus, the bus may be BUSY under control of another master, // in which case we can avoid some arbitration failures by waiting until // the bus state is IDLE. We don't do that here. // If anything to send, initiate write. Otherwise initiate read. if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) { // Send start and address with read flag (1) or'd in s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1) | 1; } else { // Send start and address with write flag (0) or'd in s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1ul) | 0; } } /*************************************************************************** * Initiate a stop bit for transmission (does not interrupt) ***************************************************************************/ void I2CManagerClass::I2C_sendStop() { s->I2CM.CTRLB.bit.CMD = 3; // Stop condition } /*************************************************************************** * Close I2C down ***************************************************************************/ void I2CManagerClass::I2C_close() { I2C_sendStop(); // Disable the I2C master mode and wait for sync s->I2CM.CTRLA.bit.ENABLE = 0 ; // Wait for up to 500us only. unsigned long startTime = micros(); while (s->I2CM.SYNCBUSY.bit.ENABLE != 0) { if (micros() - startTime >= 500UL) break; } } /*************************************************************************** * Main state machine for I2C, called from interrupt handler or, * if I2C_USE_INTERRUPTS isn't defined, from the I2CManagerClass::loop() function * (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()). ***************************************************************************/ void I2CManagerClass::I2C_handleInterrupt() { if (s->I2CM.STATUS.bit.ARBLOST) { // Arbitration lost, restart I2C_sendStart(); // Reinitiate request } else if (s->I2CM.STATUS.bit.BUSERR) { // Bus error completionStatus = I2C_STATUS_BUS_ERROR; state = I2C_STATE_COMPLETED; // Completed with error } else if (s->I2CM.INTFLAG.bit.MB) { // Master write completed if (s->I2CM.STATUS.bit.RXNACK) { // Nacked, send stop. I2C_sendStop(); completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE; state = I2C_STATE_COMPLETED; // Completed with error } else if (bytesToSend) { // Acked, so send next byte s->I2CM.DATA.bit.DATA = currentRequest->writeBuffer[txCount++]; bytesToSend--; } else if (bytesToReceive) { // Last sent byte acked and no more to send. Send repeated start, address and read bit. s->I2CM.ADDR.bit.ADDR = (currentRequest->i2cAddress << 1) | 1; } else { // No more data to send/receive. Initiate a STOP condition I2C_sendStop(); state = I2C_STATE_COMPLETED; // Completed OK } } else if (s->I2CM.INTFLAG.bit.SB) { // Master read completed without errors if (bytesToReceive == 1) { s->I2CM.CTRLB.bit.ACKACT = 1; // NAK final byte I2C_sendStop(); // send stop currentRequest->readBuffer[rxCount++] = s->I2CM.DATA.bit.DATA; // Store received byte bytesToReceive = 0; state = I2C_STATE_COMPLETED; // Completed OK } else if (bytesToReceive) { s->I2CM.CTRLB.bit.ACKACT = 0; // ACK all but final byte currentRequest->readBuffer[rxCount++] = s->I2CM.DATA.bit.DATA; // Store received byte bytesToReceive--; } } } #endif /* I2CMANAGER_SAMD_H */