/* * © 2022 Paul M Antoine * © 2021 Neil McKechnie * © 2021 Mike S * © 2021 Herb Morton * © 2020-2023 Harald Barth * © 2020-2021 M Steve Todd * © 2020-2021 Fred Decker * © 2020-2021 Chris Harlow * © 2022 Colin Murdoch * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "StringFormatter.h" #include "DCCEXParser.h" #include "DCC.h" #include "DCCWaveform.h" #include "Turnouts.h" #include "Outputs.h" #include "Sensors.h" #include "GITHUB_SHA.h" #include "version.h" #include "defines.h" #include "CommandDistributor.h" #include "EEStore.h" #include "DIAG.h" #include "TrackManager.h" #include "DCCTimer.h" #include "EXRAIL2.h" #include "Turntables.h" // This macro can't be created easily as a portable function because the // flashlist requires a far pointer for high flash access. #define SENDFLASHLIST(stream,flashList) \ for (int16_t i=0;;i+=sizeof(flashList[0])) { \ int16_t value=GETHIGHFLASHW(flashList,i); \ if (value==INT16_MAX) break; \ if (value != 0) StringFormatter::send(stream,F(" %d"),value); \ } // These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter. // To discover new keyword numbers , use the <$ YOURKEYWORD> command const int16_t HASH_KEYWORD_MAIN = 11339; const int16_t HASH_KEYWORD_CABS = -11981; const int16_t HASH_KEYWORD_RAM = 25982; const int16_t HASH_KEYWORD_CMD = 9962; const int16_t HASH_KEYWORD_ACK = 3113; const int16_t HASH_KEYWORD_ON = 2657; const int16_t HASH_KEYWORD_DCC = 6436; const int16_t HASH_KEYWORD_SLOW = -17209; #ifndef DISABLE_PROG const int16_t HASH_KEYWORD_JOIN = -30750; const int16_t HASH_KEYWORD_PROG = -29718; const int16_t HASH_KEYWORD_PROGBOOST = -6353; #endif #ifndef DISABLE_EEPROM const int16_t HASH_KEYWORD_EEPROM = -7168; #endif const int16_t HASH_KEYWORD_LIMIT = 27413; const int16_t HASH_KEYWORD_MAX = 16244; const int16_t HASH_KEYWORD_MIN = 15978; const int16_t HASH_KEYWORD_RESET = 26133; const int16_t HASH_KEYWORD_RETRY = 25704; const int16_t HASH_KEYWORD_SPEED28 = -17064; const int16_t HASH_KEYWORD_SPEED128 = 25816; const int16_t HASH_KEYWORD_SERVO=27709; const int16_t HASH_KEYWORD_TT=2688; const int16_t HASH_KEYWORD_VPIN=-415; const int16_t HASH_KEYWORD_A='A'; const int16_t HASH_KEYWORD_C='C'; const int16_t HASH_KEYWORD_G='G'; const int16_t HASH_KEYWORD_I='I'; const int16_t HASH_KEYWORD_O='O'; const int16_t HASH_KEYWORD_P='P'; const int16_t HASH_KEYWORD_R='R'; const int16_t HASH_KEYWORD_T='T'; const int16_t HASH_KEYWORD_X='X'; const int16_t HASH_KEYWORD_LCN = 15137; const int16_t HASH_KEYWORD_HAL = 10853; const int16_t HASH_KEYWORD_SHOW = -21309; const int16_t HASH_KEYWORD_ANIN = -10424; const int16_t HASH_KEYWORD_ANOUT = -26399; const int16_t HASH_KEYWORD_WIFI = -5583; const int16_t HASH_KEYWORD_ETHERNET = -30767; const int16_t HASH_KEYWORD_WIT = 31594; const int16_t HASH_KEYWORD_EXTT = 8573; const int16_t HASH_KEYWORD_ADD = 3201; int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS]; bool DCCEXParser::stashBusy; Print *DCCEXParser::stashStream = NULL; RingStream *DCCEXParser::stashRingStream = NULL; byte DCCEXParser::stashTarget=0; // This is a JMRI command parser. // It doesnt know how the string got here, nor how it gets back. // It knows nothing about hardware or tracks... it just parses strings and // calls the corresponding DCC api. // Non-DCC things like turnouts, pins and sensors are handled in additional JMRI interface classes. int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], const byte *cmd, bool usehex) { byte state = 1; byte parameterCount = 0; int16_t runningValue = 0; const byte *remainingCmd = cmd + 1; // skips the opcode bool signNegative = false; // clear all parameters in case not enough found for (int16_t i = 0; i < MAX_COMMAND_PARAMS; i++) result[i] = 0; while (parameterCount < MAX_COMMAND_PARAMS) { byte hot = *remainingCmd; switch (state) { case 1: // skipping spaces before a param if (hot == ' ') break; if (hot == '\0' || hot == '>') return parameterCount; state = 2; continue; case 2: // checking sign signNegative = false; runningValue = 0; state = 3; if (hot != '-') continue; signNegative = true; break; case 3: // building a parameter if (hot >= '0' && hot <= '9') { runningValue = (usehex?16:10) * runningValue + (hot - '0'); break; } if (hot >= 'a' && hot <= 'z') hot=hot-'a'+'A'; // uppercase a..z if (usehex && hot>='A' && hot<='F') { // treat A..F as hex not keyword runningValue = 16 * runningValue + (hot - 'A' + 10); break; } if (hot=='_' || (hot >= 'A' && hot <= 'Z')) { // Since JMRI got modified to send keywords in some rare cases, we need this // Super Kluge to turn keywords into a hash value that can be recognised later runningValue = ((runningValue << 5) + runningValue) ^ hot; break; } result[parameterCount] = runningValue * (signNegative ? -1 : 1); parameterCount++; state = 1; continue; } remainingCmd++; } return parameterCount; } extern __attribute__((weak)) void myFilter(Print * stream, byte & opcode, byte & paramCount, int16_t p[]); FILTER_CALLBACK DCCEXParser::filterCallback = myFilter; FILTER_CALLBACK DCCEXParser::filterRMFTCallback = 0; AT_COMMAND_CALLBACK DCCEXParser::atCommandCallback = 0; // deprecated void DCCEXParser::setFilter(FILTER_CALLBACK filter) { filterCallback = filter; } void DCCEXParser::setRMFTFilter(FILTER_CALLBACK filter) { filterRMFTCallback = filter; } void DCCEXParser::setAtCommandCallback(AT_COMMAND_CALLBACK callback) { atCommandCallback = callback; } // Parse an F() string void DCCEXParser::parse(const FSH * cmd) { DIAG(F("SETUP(\"%S\")"),cmd); int size=STRLEN_P((char *)cmd)+1; char buffer[size]; STRCPY_P(buffer,(char *)cmd); parse(&USB_SERIAL,(byte *)buffer,NULL); } // See documentation on DCC class for info on this section void DCCEXParser::parse(Print *stream, byte *com, RingStream *ringStream) { // This function can get stings of the form "" or "C OMM AND" // found is true first after the leading "<" has been passed bool found = (com[0] != '<'); for (byte *c=com; c[0] != '\0'; c++) { if (found) { parseOne(stream, c, ringStream); found=false; } if (c[0] == '<') found = true; } } void DCCEXParser::parseOne(Print *stream, byte *com, RingStream * ringStream) { #ifdef DISABLE_PROG (void)ringStream; #endif #ifndef DISABLE_EEPROM (void)EEPROM; // tell compiler not to warn this is unused #endif if (Diag::CMD) DIAG(F("PARSING:%s"), com); int16_t p[MAX_COMMAND_PARAMS]; while (com[0] == '<' || com[0] == ' ') com++; // strip off any number of < or spaces byte opcode = com[0]; byte params = splitValues(p, com, opcode=='M' || opcode=='P'); if (filterCallback) filterCallback(stream, opcode, params, p); if (filterRMFTCallback && opcode!='\0') filterRMFTCallback(stream, opcode, params, p); // Functions return from this switch if complete, break from switch implies error to send switch (opcode) { case '\0': return; // filterCallback asked us to ignore case 't': // THROTTLE { if (params==1) { // display state int16_t slot=DCC::lookupSpeedTable(p[0],false); if (slot>=0) { DCC::LOCO * sp=&DCC::speedTable[slot]; StringFormatter::send(stream,F("\n"), sp->loco,slot,sp->speedCode,sp->functions); } else // send dummy state speed 0 fwd no functions. StringFormatter::send(stream,F("\n"),p[0]); return; } int16_t cab; int16_t tspeed; int16_t direction; if (params == 4) { // cab = p[1]; tspeed = p[2]; direction = p[3]; } else if (params == 3) { // cab = p[0]; tspeed = p[1]; direction = p[2]; } else break; // Convert DCC-EX protocol speed steps where // -1=emergency stop, 0-126 as speeds // to DCC 0=stop, 1= emergency stop, 2-127 speeds if (tspeed > 126 || tspeed < -1) break; // invalid JMRI speed code if (tspeed < 0) tspeed = 1; // emergency stop DCC speed else if (tspeed > 0) tspeed++; // map 1-126 -> 2-127 if (cab == 0 && tspeed > 1) break; // ignore broadcasts of speed>1 if (direction < 0 || direction > 1) break; // invalid direction code if (cab > 10239 || cab < 0) break; // beyond DCC range DCC::setThrottle(cab, tspeed, direction); if (params == 4) // send obsolete format T response StringFormatter::send(stream, F("\n"), p[0], p[2], p[3]); // speed change will be broadcast anyway in new format return; } case 'f': // FUNCTION if (parsef(stream, params, p)) return; break; case 'a': // ACCESSORY or { int address; byte subaddress; byte activep; byte onoff; if (params==2) { // address=(p[0] - 1) / 4 + 1; subaddress=(p[0] - 1) % 4; activep=1; onoff=2; // send both } else if (params==3) { // address=p[0]; subaddress=p[1]; activep=2; onoff=2; // send both } else if (params==4) { // address=p[0]; subaddress=p[1]; activep=2; if ((p[3] < 0) || (p[3] > 1)) // invalid onoff 0|1 break; onoff=p[3]; } else break; // invalid no of parameters if ( ((address & 0x01FF) != address) // invalid address (limit 9 bits) || ((subaddress & 0x03) != subaddress) // invalid subaddress (limit 2 bits) || (p[activep] > 1) || (p[activep] < 0) // invalid activate 0|1 ) break; // Honour the configuration option (config.h) which allows the command to be reversed #ifdef DCC_ACCESSORY_COMMAND_REVERSE DCC::setAccessory(address, subaddress,p[activep]==0,onoff); #else DCC::setAccessory(address, subaddress,p[activep]==1,onoff); #endif } return; case 'T': // TURNOUT if (parseT(stream, params, p)) return; break; case 'z': // direct pin manipulation if (p[0]==0) break; if (params==1) { // if (p[0]>0) IODevice::write(p[0],HIGH); else IODevice::write(-p[0],LOW); return; } if (params>=2 && params<=4) { // // unused params default to 0 IODevice::writeAnalogue(p[0],p[1],p[2],p[3]); return; } break; case 'Z': // OUTPUT if (parseZ(stream, params, p)) return; break; case 'S': // SENSOR if (parseS(stream, params, p)) return; break; #ifndef DISABLE_PROG case 'w': // WRITE CV on MAIN DCC::writeCVByteMain(p[0], p[1], p[2]); return; case 'b': // WRITE CV BIT ON MAIN DCC::writeCVBitMain(p[0], p[1], p[2], p[3]); return; #endif case 'M': // WRITE TRANSPARENT DCC PACKET MAIN #ifndef DISABLE_PROG case 'P': // WRITE TRANSPARENT DCC PACKET PROG

#endif // NOTE: this command was parsed in HEX instead of decimal params--; // drop REG if (params<1) break; if (params > MAX_PACKET_SIZE) break; { byte packet[params]; for (int i=0;i if (!stashCallback(stream, p, ringStream)) break; if (params == 1) // Write new loco id (clearing consist and managing short/long) DCC::setLocoId(p[0],callback_Wloco); else if (params == 4) // WRITE CV ON PROG DCC::writeCVByte(p[0], p[1], callback_W4); else // WRITE CV ON PROG DCC::writeCVByte(p[0], p[1], callback_W); return; case 'V': // VERIFY CV ON PROG if (params == 2) { // if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVByte(p[0], p[1], callback_Vbyte); return; } if (params == 3) { if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVBit(p[0], p[1], p[2], callback_Vbit); return; } break; case 'B': // WRITE CV BIT ON PROG if (!stashCallback(stream, p, ringStream)) break; DCC::writeCVBit(p[0], p[1], p[2], callback_B); return; case 'R': // READ CV ON PROG if (params == 1) { // -- uses verify callback if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVByte(p[0], 0, callback_Vbyte); return; } if (params == 3) { // if (!stashCallback(stream, p, ringStream)) break; DCC::readCV(p[0], callback_R); return; } if (params == 0) { // New read loco id if (!stashCallback(stream, p, ringStream)) break; DCC::getLocoId(callback_Rloco); return; } break; #endif case '1': // POWERON <1 [MAIN|PROG|JOIN]> { bool main=false; bool prog=false; bool join=false; if (params > 1) break; if (params==0) { // All main=true; prog=true; } if (params==1) { if (p[0]==HASH_KEYWORD_MAIN) { // <1 MAIN> main=true; } #ifndef DISABLE_PROG else if (p[0] == HASH_KEYWORD_JOIN) { // <1 JOIN> main=true; prog=true; join=true; } else if (p[0]==HASH_KEYWORD_PROG) { // <1 PROG> prog=true; } #endif else break; // will reply } TrackManager::setJoin(join); if (main) TrackManager::setMainPower(POWERMODE::ON); if (prog) TrackManager::setProgPower(POWERMODE::ON); CommandDistributor::broadcastPower(); return; } case '0': // POWEROFF <0 [MAIN | PROG] > { bool main=false; bool prog=false; if (params > 1) break; if (params==0) { // All main=true; prog=true; } if (params==1) { if (p[0]==HASH_KEYWORD_MAIN) { // <0 MAIN> main=true; } #ifndef DISABLE_PROG else if (p[0]==HASH_KEYWORD_PROG) { // <0 PROG> prog=true; } #endif else break; // will reply } TrackManager::setJoin(false); if (main) TrackManager::setMainPower(POWERMODE::OFF); if (prog) { TrackManager::progTrackBoosted=false; // Prog track boost mode will not outlive prog track off TrackManager::setProgPower(POWERMODE::OFF); } CommandDistributor::broadcastPower(); return; } case '!': // ESTOP ALL DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1. return; case 'c': // SEND METER RESPONSES // No longer useful because of multiple tracks See and if (params>0) break; TrackManager::reportObsoleteCurrent(stream); return; case 'Q': // SENSORS Sensor::printAll(stream); return; case 's': // StringFormatter::send(stream, F("\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA)); CommandDistributor::broadcastPower(); // is the only "get power status" command we have Turnout::printAll(stream); //send all Turnout states Sensor::printAll(stream); //send all Sensor states return; #ifndef DISABLE_EEPROM case 'E': // STORE EPROM EEStore::store(); StringFormatter::send(stream, F("\n"), EEStore::eeStore->data.nTurnouts, EEStore::eeStore->data.nSensors, EEStore::eeStore->data.nOutputs); return; case 'e': // CLEAR EPROM EEStore::clear(); StringFormatter::send(stream, F("\n")); return; #endif case ' ': // < > StringFormatter::send(stream, F("\n")); return; case 'D': // < > if (parseD(stream, params, p)) return; return; case '=': // <= Track manager control > if (TrackManager::parseJ(stream, params, p)) return; break; case '#': // NUMBER OF LOCOSLOTS <#> StringFormatter::send(stream, F("<# %d>\n"), MAX_LOCOS); return; case '-': // Forget Loco <- [cab]> if (params > 1 || p[0]<0) break; if (p[0]==0) DCC::forgetAllLocos(); else DCC::forgetLoco(p[0]); return; case 'F': // New command to call the new Loco Function API if(params!=3) break; if (Diag::CMD) DIAG(F("Setting loco %d F%d %S"), p[0], p[1], p[2] ? F("ON") : F("OFF")); if (DCC::setFn(p[0], p[1], p[2] == 1)) return; break; #if WIFI_ON case '+': // Complex Wifi interface command (not usual parse) if (atCommandCallback && !ringStream) { TrackManager::setPower(POWERMODE::OFF); atCommandCallback((HardwareSerial *)stream,com); return; } break; #endif case 'J' : // throttle info access { if ((params<1) | (params>3)) break; // //if ((params<1) | (params>2)) break; // int16_t id=(params==2)?p[1]:0; switch(p[0]) { case HASH_KEYWORD_C: // sets time and speed if (params==1) { // returns latest time int16_t x = CommandDistributor::retClockTime(); StringFormatter::send(stream, F("\n"), x); return; } CommandDistributor::setClockTime(p[1], p[2], 1); return; case HASH_KEYWORD_G: // current gauge limits if (params>1) break; TrackManager::reportGauges(stream); // return; case HASH_KEYWORD_I: // current values if (params>1) break; TrackManager::reportCurrent(stream); // return; case HASH_KEYWORD_A: // returns automations/routes StringFormatter::send(stream, F(" #ifdef EXRAIL_ACTIVE SENDFLASHLIST(stream,RMFT2::routeIdList) SENDFLASHLIST(stream,RMFT2::automationIdList) #endif } else { // StringFormatter::send(stream,F(" %d %c \"%S\""), id, #ifdef EXRAIL_ACTIVE RMFT2::getRouteType(id), // A/R RMFT2::getRouteDescription(id) #else 'X',F("") #endif ); } StringFormatter::send(stream, F(">\n")); return; case HASH_KEYWORD_R: // returns rosters StringFormatter::send(stream, F("\n")); return; case HASH_KEYWORD_T: // returns turnout list StringFormatter::send(stream, F(" for ( Turnout * t=Turnout::first(); t; t=t->next()) { if (t->isHidden()) continue; StringFormatter::send(stream, F(" %d"),t->getId()); } } else { // Turnout * t=Turnout::get(id); if (!t || t->isHidden()) StringFormatter::send(stream, F(" %d X"),id); else { const FSH *tdesc = NULL; #ifdef EXRAIL_ACTIVE tdesc = RMFT2::getTurnoutDescription(id); #endif if (tdesc == NULL) tdesc = F(""); StringFormatter::send(stream, F(" %d %c \"%S\""), id,t->isThrown()?'T':'C', tdesc); } } StringFormatter::send(stream, F(">\n")); return; // No turntables without HAL support #ifndef IO_NO_HAL case HASH_KEYWORD_O: // for (Turntable * tto=Turntable::first(); tto; tto=tto->next()) { if (tto->isHidden()) continue; StringFormatter::send(stream, F(" %d"),tto->getId()); } StringFormatter::send(stream, F(">\n")); } else { // Turntable *tto=Turntable::get(id); if (!tto || tto->isHidden()) { StringFormatter::send(stream, F(" %d X>\n"), id); } else { uint8_t pos = tto->getPosition(); uint8_t type = tto->isEXTT(); uint8_t posCount = tto->getPositionCount(); const FSH *todesc = NULL; #ifdef EXRAIL_ACTIVE todesc = RMFT2::getTurntableDescription(id); #endif if (todesc == NULL) todesc = F(""); StringFormatter::send(stream, F(" %d %d %d %d \"%S\">\n"), id, type, pos, posCount, todesc); } } return; case HASH_KEYWORD_P: // returns turntable position list for the turntable id if (params==2) { // Turntable *tto=Turntable::get(id); if (!tto || tto->isHidden()) { StringFormatter::send(stream, F(" %d X>\n"), id); } else { uint8_t posCount = tto->getPositionCount(); const FSH *tpdesc = NULL; for (uint8_t p = 0; p < posCount; p++) { StringFormatter::send(stream, F("getPositionValue(p); int16_t angle = tto->getPositionAngle(p); #ifdef EXRAIL_ACTIVE tpdesc = RMFT2::getTurntablePositionDescription(id, p); #endif if (tpdesc == NULL) tpdesc = F(""); StringFormatter::send(stream, F(" %d %d %d %d \"%S\""), id, p, value, angle, tpdesc); StringFormatter::send(stream, F(">\n")); } } } else { StringFormatter::send(stream, F("\n")); } return; #endif default: break; } // switch(p[1]) break; // case J } // No turntables without HAL support #ifndef IO_NO_HAL case 'I': // TURNTABLE if (parseI(stream, params, p)) return; break; #endif default: //anything else will diagnose and drop out to DIAG(F("Opcode=%c params=%d"), opcode, params); for (int i = 0; i < params; i++) DIAG(F("p[%d]=%d (0x%x)"), i, p[i], p[i]); break; } // end of opcode switch // Any fallout here sends an StringFormatter::send(stream, F("\n")); } bool DCCEXParser::parseZ(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 2: // { Output *o = Output::get(p[0]); if (o == NULL) return false; o->activate(p[1]); StringFormatter::send(stream, F("\n"), p[0], p[1]); } return true; case 3: // if (p[0] < 0 || p[2] < 0 || p[2] > 7 ) return false; if (!Output::create(p[0], p[1], p[2], 1)) return false; StringFormatter::send(stream, F("\n")); return true; case 1: // if (!Output::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 0: // list Output definitions { bool gotone = false; for (Output *tt = Output::firstOutput; tt != NULL; tt = tt->nextOutput) { gotone = true; StringFormatter::send(stream, F("\n"), tt->data.id, tt->data.pin, tt->data.flags, tt->data.active); } return gotone; } default: return false; } } //=================================== bool DCCEXParser::parsef(Print *stream, int16_t params, int16_t p[]) { // JMRI sends this info in DCC message format but it's not exactly // convenient for other processing if (params == 2) { byte instructionField = p[1] & 0xE0; // 1110 0000 if (instructionField == 0x80) { // 1000 0000 Function group 1 // Shuffle bits from order F0 F4 F3 F2 F1 to F4 F3 F2 F1 F0 byte normalized = (p[1] << 1 & 0x1e) | (p[1] >> 4 & 0x01); return (funcmap(p[0], normalized, 0, 4)); } else if (instructionField == 0xA0) { // 1010 0000 Function group 2 if (p[1] & 0x10) // 0001 0000 Bit selects F5toF8 / F9toF12 return (funcmap(p[0], p[1], 5, 8)); else return (funcmap(p[0], p[1], 9, 12)); } } if (params == 3) { if (p[1] == 222) { return (funcmap(p[0], p[2], 13, 20)); } else if (p[1] == 223) { return (funcmap(p[0], p[2], 21, 28)); } } (void)stream; // NO RESPONSE return false; } bool DCCEXParser::funcmap(int16_t cab, byte value, byte fstart, byte fstop) { for (int16_t i = fstart; i <= fstop; i++) { if (! DCC::setFn(cab, i, value & 1)) return false; value >>= 1; } return true; } //=================================== bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 0: // list turnout definitions return Turnout::printAll(stream); // will if none found case 1: // delete turnout if (!Turnout::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 2: // { bool state = false; switch (p[1]) { // Turnout messages use 1=throw, 0=close. case 0: case HASH_KEYWORD_C: state = true; break; case 1: case HASH_KEYWORD_T: state= false; break; case HASH_KEYWORD_X: { Turnout *tt = Turnout::get(p[0]); if (tt) { tt->print(stream); return true; } return false; } default: // Invalid parameter return false; } if (!Turnout::setClosed(p[0], state)) return false; return true; } default: // Anything else is some kind of turnout create function. if (params == 6 && p[1] == HASH_KEYWORD_SERVO) { // if (!ServoTurnout::create(p[0], (VPIN)p[2], (uint16_t)p[3], (uint16_t)p[4], (uint8_t)p[5])) return false; } else if (params == 3 && p[1] == HASH_KEYWORD_VPIN) { // if (!VpinTurnout::create(p[0], p[2])) return false; } else if (params >= 3 && p[1] == HASH_KEYWORD_DCC) { // 0<=addr<=511, 0<=subadd<=3 (like command). if (params==4 && p[2]>=0 && p[2]<512 && p[3]>=0 && p[3]<4) { // if (!DCCTurnout::create(p[0], p[2], p[3])) return false; } else if (params==3 && p[2]>0 && p[2]<=512*4) { // , 1<=nn<=2048 // Linearaddress 1 maps onto decoder address 1/0 (not 0/0!). if (!DCCTurnout::create(p[0], (p[2]-1)/4+1, (p[2]-1)%4)) return false; } else return false; } else if (params==3) { // legacy for DCC accessory if (p[1]>=0 && p[1]<512 && p[2]>=0 && p[2]<4) { if (!DCCTurnout::create(p[0], p[1], p[2])) return false; } else return false; } else if (params==4) { // legacy for Servo if (!ServoTurnout::create(p[0], (VPIN)p[1], (uint16_t)p[2], (uint16_t)p[3], 1)) return false; } else return false; StringFormatter::send(stream, F("\n")); return true; } } bool DCCEXParser::parseS(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 3: // create sensor. pullUp indicator (0=LOW/1=HIGH) if (!Sensor::create(p[0], p[1], p[2])) return false; StringFormatter::send(stream, F("\n")); return true; case 1: // S id> remove sensor if (!Sensor::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 0: // list sensor definitions if (Sensor::firstSensor == NULL) return false; for (Sensor *tt = Sensor::firstSensor; tt != NULL; tt = tt->nextSensor) { StringFormatter::send(stream, F("\n"), tt->data.snum, tt->data.pin, tt->data.pullUp); } return true; default: // invalid number of arguments break; } return false; } bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[]) { if (params == 0) return false; bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off switch (p[0]) { case HASH_KEYWORD_CABS: // DCC::displayCabList(stream); return true; case HASH_KEYWORD_RAM: // StringFormatter::send(stream, F("Free memory=%d\n"), DCCTimer::getMinimumFreeMemory()); break; #ifndef DISABLE_PROG case HASH_KEYWORD_ACK: // if (params >= 3) { if (p[1] == HASH_KEYWORD_LIMIT) { DCCACK::setAckLimit(p[2]); LCD(1, F("Ack Limit=%dmA"), p[2]); // } else if (p[1] == HASH_KEYWORD_MIN) { DCCACK::setMinAckPulseDuration(p[2]); LCD(0, F("Ack Min=%uus"), p[2]); // } else if (p[1] == HASH_KEYWORD_MAX) { DCCACK::setMaxAckPulseDuration(p[2]); LCD(0, F("Ack Max=%uus"), p[2]); // } else if (p[1] == HASH_KEYWORD_RETRY) { if (p[2] >255) p[2]=3; LCD(0, F("Ack Retry=%d Sum=%d"), p[2], DCCACK::setAckRetry(p[2])); // } } else { StringFormatter::send(stream, F("Ack diag %S\n"), onOff ? F("on") : F("off")); Diag::ACK = onOff; } return true; #endif case HASH_KEYWORD_CMD: // Diag::CMD = onOff; return true; #ifdef HAS_ENOUGH_MEMORY case HASH_KEYWORD_WIFI: // Diag::WIFI = onOff; return true; case HASH_KEYWORD_ETHERNET: // Diag::ETHERNET = onOff; return true; case HASH_KEYWORD_WIT: // Diag::WITHROTTLE = onOff; return true; case HASH_KEYWORD_LCN: // Diag::LCN = onOff; return true; #endif #ifndef DISABLE_PROG case HASH_KEYWORD_PROGBOOST: TrackManager::progTrackBoosted=true; return true; #endif case HASH_KEYWORD_RESET: DCCTimer::reset(); break; // and if we didnt restart #ifndef DISABLE_EEPROM case HASH_KEYWORD_EEPROM: // if (params >= 2) EEStore::dump(p[1]); return true; #endif case HASH_KEYWORD_SPEED28: DCC::setGlobalSpeedsteps(28); StringFormatter::send(stream, F("28 Speedsteps")); return true; case HASH_KEYWORD_SPEED128: DCC::setGlobalSpeedsteps(128); StringFormatter::send(stream, F("128 Speedsteps")); return true; case HASH_KEYWORD_SERVO: // case HASH_KEYWORD_ANOUT: // IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0); break; case HASH_KEYWORD_ANIN: // Display analogue input value DIAG(F("VPIN=%u value=%d"), p[1], IODevice::readAnalogue(p[1])); break; #if !defined(IO_NO_HAL) case HASH_KEYWORD_HAL: if (p[1] == HASH_KEYWORD_SHOW) IODevice::DumpAll(); else if (p[1] == HASH_KEYWORD_RESET) IODevice::reset(); break; #endif case HASH_KEYWORD_TT: // IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0); break; default: // invalid/unknown break; } return false; } // ========================== // Turntable - no support if no HAL // - list all // - broadcast type and current position // - create DCC - This is TBA // - operate (DCC) // - operate (EXTT) // - add position // - create EXTT #ifndef IO_NO_HAL bool DCCEXParser::parseI(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 0: // list turntable objects return Turntable::printAll(stream); case 1: // broadcast type and current position { Turntable *tto = Turntable::get(p[0]); if (tto) { bool type = tto->isEXTT(); uint8_t position = tto->getPosition(); StringFormatter::send(stream, F("\n"), type, position); } else { return false; } } return true; case 2: // - rotate a DCC turntable { Turntable *tto = Turntable::get(p[0]); if (tto && !tto->isEXTT()) { if (!tto->setPosition(p[0], p[1])) return false; } else { return false; } } return true; case 3: // | - rotate to position for EX-Turntable or create DCC turntable { Turntable *tto = Turntable::get(p[0]); if (p[1] == HASH_KEYWORD_DCC) { if (tto || p[2] < 0 || p[2] > 3600) return false; if (!DCCTurntable::create(p[0])) return false; Turntable *tto = Turntable::get(p[0]); tto->addPosition(0, 0, p[2]); StringFormatter::send(stream, F("\n")); } else { if (!tto) return false; if (!tto->isEXTT()) return false; if (!tto->setPosition(p[0], p[1], p[2])) return false; } } return true; case 4: // create an EXTT turntable { Turntable *tto = Turntable::get(p[0]); if (p[1] == HASH_KEYWORD_EXTT) { if (tto || p[3] < 0 || p[3] > 3600) return false; if (!EXTTTurntable::create(p[0], (VPIN)p[2])) return false; Turntable *tto = Turntable::get(p[0]); tto->addPosition(0, 0, p[3]); StringFormatter::send(stream, F("\n")); } else { return false; } } return true; case 5: // add a position { Turntable *tto = Turntable::get(p[0]); if (p[1] == HASH_KEYWORD_ADD) { // tto must exist, no more than 48 positions, angle 0 - 3600 if (!tto || p[2] > 48 || p[4] < 0 || p[4] > 3600) return false; tto->addPosition(p[2], p[3], p[4]); StringFormatter::send(stream, F("\n")); } else { return false; } } return true; default: // Anything else is invalid return false; } } #endif // CALLBACKS must be static bool DCCEXParser::stashCallback(Print *stream, int16_t p[MAX_COMMAND_PARAMS], RingStream * ringStream) { if (stashBusy ) return false; stashBusy = true; stashStream = stream; stashRingStream=ringStream; if (ringStream) stashTarget= ringStream->peekTargetMark(); memcpy(stashP, p, MAX_COMMAND_PARAMS * sizeof(p[0])); return true; } Print * DCCEXParser::getAsyncReplyStream() { if (stashRingStream) { stashRingStream->mark(stashTarget); return stashRingStream; } return stashStream; } void DCCEXParser::commitAsyncReplyStream() { if (stashRingStream) stashRingStream->commit(); stashBusy = false; } void DCCEXParser::callback_W(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], result == 1 ? stashP[1] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_W4(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[2], stashP[3], stashP[0], result == 1 ? stashP[1] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_B(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[3], stashP[4], stashP[0], stashP[1], result == 1 ? stashP[2] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_Vbit(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], stashP[1], result); commitAsyncReplyStream(); } void DCCEXParser::callback_Vbyte(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], result); commitAsyncReplyStream(); } void DCCEXParser::callback_R(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[1], stashP[2], stashP[0], result); commitAsyncReplyStream(); } void DCCEXParser::callback_Rloco(int16_t result) { const FSH * detail; if (result<=0) { detail=F("\n"); } else { bool longAddr=result & LONG_ADDR_MARKER; //long addr if (longAddr) result = result^LONG_ADDR_MARKER; if (longAddr && result <= HIGHEST_SHORT_ADDR) detail=F("\n"); else detail=F("\n"); } StringFormatter::send(getAsyncReplyStream(), detail, result); commitAsyncReplyStream(); } void DCCEXParser::callback_Wloco(int16_t result) { if (result==1) result=stashP[0]; // pick up original requested id from command StringFormatter::send(getAsyncReplyStream(), F("\n"), result); commitAsyncReplyStream(); }