/* * © 2020, Chris Harlow. All rights reserved. * © 2020, Harald Barth. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "StringFormatter.h" #include "DCCEXParser.h" #include "DCC.h" #include "DCCWaveform.h" #include "Turnouts.h" #include "Outputs.h" #include "Sensors.h" #include "freeMemory.h" #include "GITHUB_SHA.h" #include "version.h" #include "EEStore.h" #include "DIAG.h" #include //////////////////////////////////////////////////////////////////////////////// // // Figure out if we have enough memory for advanced features // #if defined(ARDUINO_AVR_UNO) || defined(ARDUINO_AVR_NANO) // nope #else #define HAS_ENOUGH_MEMORY #endif // These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter. // To discover new keyword numbers , use the <$ YOURKEYWORD> command const int16_t HASH_KEYWORD_PROG = -29718; const int16_t HASH_KEYWORD_MAIN = 11339; const int16_t HASH_KEYWORD_JOIN = -30750; const int16_t HASH_KEYWORD_CABS = -11981; const int16_t HASH_KEYWORD_RAM = 25982; const int16_t HASH_KEYWORD_CMD = 9962; const int16_t HASH_KEYWORD_ACK = 3113; const int16_t HASH_KEYWORD_ON = 2657; const int16_t HASH_KEYWORD_DCC = 6436; const int16_t HASH_KEYWORD_SLOW = -17209; const int16_t HASH_KEYWORD_PROGBOOST = -6353; const int16_t HASH_KEYWORD_EEPROM = -7168; const int16_t HASH_KEYWORD_LIMIT = 27413; const int16_t HASH_KEYWORD_MAX = 16244; const int16_t HASH_KEYWORD_MIN = 15978; const int16_t HASH_KEYWORD_RESET = 26133; const int16_t HASH_KEYWORD_RETRY = 25704; const int16_t HASH_KEYWORD_SPEED28 = -17064; const int16_t HASH_KEYWORD_SPEED128 = 25816; #ifdef HAS_ENOUGH_MEMORY const int16_t HASH_KEYWORD_WIFI = -5583; const int16_t HASH_KEYWORD_ETHERNET = -30767; const int16_t HASH_KEYWORD_WIT = 31594; const int16_t HASH_KEYWORD_LCN = 15137; #endif int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS]; bool DCCEXParser::stashBusy; Print *DCCEXParser::stashStream = NULL; RingStream *DCCEXParser::stashRingStream = NULL; byte DCCEXParser::stashTarget=0; // This is a JMRI command parser, one instance per incoming stream // It doesnt know how the string got here, nor how it gets back. // It knows nothing about hardware or tracks... it just parses strings and // calls the corresponding DCC api. // Non-DCC things like turnouts, pins and sensors are handled in additional JMRI interface classes. DCCEXParser::DCCEXParser() {} void DCCEXParser::flush() { if (Diag::CMD) DIAG(F("Buffer flush")); bufferLength = 0; inCommandPayload = false; } void DCCEXParser::loop(Stream &stream) { while (stream.available()) { if (bufferLength == MAX_BUFFER) { flush(); } char ch = stream.read(); if (ch == '<') { inCommandPayload = true; bufferLength = 0; buffer[0] = '\0'; } else if (ch == '>') { buffer[bufferLength] = '\0'; parse(&stream, buffer, NULL); // Parse this (No ringStream for serial) inCommandPayload = false; break; } else if (inCommandPayload) { buffer[bufferLength++] = ch; } } Sensor::checkAll(&stream); // Update and print changes } int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], const byte *cmd) { byte state = 1; byte parameterCount = 0; int16_t runningValue = 0; const byte *remainingCmd = cmd + 1; // skips the opcode bool signNegative = false; // clear all parameters in case not enough found for (int16_t i = 0; i < MAX_COMMAND_PARAMS; i++) result[i] = 0; while (parameterCount < MAX_COMMAND_PARAMS) { byte hot = *remainingCmd; switch (state) { case 1: // skipping spaces before a param if (hot == ' ') break; if (hot == '\0' || hot == '>') return parameterCount; state = 2; continue; case 2: // checking sign signNegative = false; runningValue = 0; state = 3; if (hot != '-') continue; signNegative = true; break; case 3: // building a parameter if (hot >= '0' && hot <= '9') { runningValue = 10 * runningValue + (hot - '0'); break; } if (hot >= 'a' && hot <= 'z') hot=hot-'a'+'A'; // uppercase a..z if (hot >= 'A' && hot <= 'Z') { // Since JMRI got modified to send keywords in some rare cases, we need this // Super Kluge to turn keywords into a hash value that can be recognised later runningValue = ((runningValue << 5) + runningValue) ^ hot; break; } result[parameterCount] = runningValue * (signNegative ? -1 : 1); parameterCount++; state = 1; continue; } remainingCmd++; } return parameterCount; } int16_t DCCEXParser::splitHexValues(int16_t result[MAX_COMMAND_PARAMS], const byte *cmd) { byte state = 1; byte parameterCount = 0; int16_t runningValue = 0; const byte *remainingCmd = cmd + 1; // skips the opcode // clear all parameters in case not enough found for (int16_t i = 0; i < MAX_COMMAND_PARAMS; i++) result[i] = 0; while (parameterCount < MAX_COMMAND_PARAMS) { byte hot = *remainingCmd; switch (state) { case 1: // skipping spaces before a param if (hot == ' ') break; if (hot == '\0' || hot == '>') return parameterCount; state = 2; continue; case 2: // checking first hex digit runningValue = 0; state = 3; continue; case 3: // building a parameter if (hot >= '0' && hot <= '9') { runningValue = 16 * runningValue + (hot - '0'); break; } if (hot >= 'A' && hot <= 'F') { runningValue = 16 * runningValue + 10 + (hot - 'A'); break; } if (hot >= 'a' && hot <= 'f') { runningValue = 16 * runningValue + 10 + (hot - 'a'); break; } if (hot==' ' || hot=='>' || hot=='\0') { result[parameterCount] = runningValue; parameterCount++; state = 1; continue; } return -1; // invalid hex digit } remainingCmd++; } return parameterCount; } FILTER_CALLBACK DCCEXParser::filterCallback = 0; FILTER_CALLBACK DCCEXParser::filterRMFTCallback = 0; AT_COMMAND_CALLBACK DCCEXParser::atCommandCallback = 0; void DCCEXParser::setFilter(FILTER_CALLBACK filter) { filterCallback = filter; } void DCCEXParser::setRMFTFilter(FILTER_CALLBACK filter) { filterRMFTCallback = filter; } void DCCEXParser::setAtCommandCallback(AT_COMMAND_CALLBACK callback) { atCommandCallback = callback; } // Parse an F() string void DCCEXParser::parse(const FSH * cmd) { int size=strlen_P((char *)cmd)+1; char buffer[size]; strcpy_P(buffer,(char *)cmd); parse(&Serial,(byte *)buffer,NULL); } // See documentation on DCC class for info on this section void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream) { (void)EEPROM; // tell compiler not to warn this is unused if (Diag::CMD) DIAG(F("PARSING:%s"), com); int16_t p[MAX_COMMAND_PARAMS]; while (com[0] == '<' || com[0] == ' ') com++; // strip off any number of < or spaces byte params = splitValues(p, com); byte opcode = com[0]; if (filterCallback) filterCallback(stream, opcode, params, p); if (filterRMFTCallback && opcode!='\0') filterRMFTCallback(stream, opcode, params, p); // Functions return from this switch if complete, break from switch implies error to send switch (opcode) { case '\0': return; // filterCallback asked us to ignore case 't': // THROTTLE { int16_t cab; int16_t tspeed; int16_t direction; if (params == 4) { // cab = p[1]; tspeed = p[2]; direction = p[3]; } else if (params == 3) { // cab = p[0]; tspeed = p[1]; direction = p[2]; } else break; // Convert DCC-EX protocol speed steps where // -1=emergency stop, 0-126 as speeds // to DCC 0=stop, 1= emergency stop, 2-127 speeds if (tspeed > 126 || tspeed < -1) break; // invalid JMRI speed code if (tspeed < 0) tspeed = 1; // emergency stop DCC speed else if (tspeed > 0) tspeed++; // map 1-126 -> 2-127 if (cab == 0 && tspeed > 1) break; // ignore broadcasts of speed>1 if (direction < 0 || direction > 1) break; // invalid direction code DCC::setThrottle(cab, tspeed, direction); if (params == 4) StringFormatter::send(stream, F("\n"), p[0], p[2], p[3]); else StringFormatter::send(stream, F("\n")); return; } case 'f': // FUNCTION if (parsef(stream, params, p)) return; break; case 'a': // ACCESSORY or { int address; byte subaddress; byte activep; if (params==2) { // address=(p[0] - 1) / 4 + 1; subaddress=(p[0] - 1) % 4; activep=1; } else if (params==3) { // address=p[0]; subaddress=p[1]; activep=2; } else break; // invalid no of parameters if ( ((address & 0x01FF) != address) // invalid address (limit 9 bits ) || ((subaddress & 0x03) != subaddress) // invalid subaddress (limit 2 bits ) || ((p[activep] & 0x01) != p[activep]) // invalid activate 0|1 ) break; DCC::setAccessory(address, subaddress,p[activep]==1); } return; case 'T': // TURNOUT if (parseT(stream, params, p)) return; break; case 'Z': // OUTPUT if (parseZ(stream, params, p)) return; break; case 'S': // SENSOR if (parseS(stream, params, p)) return; break; case 'w': // WRITE CV on MAIN DCC::writeCVByteMain(p[0], p[1], p[2]); return; case 'b': // WRITE CV BIT ON MAIN DCC::writeCVBitMain(p[0], p[1], p[2], p[3]); return; case 'M': // WRITE TRANSPARENT DCC PACKET MAIN case 'P': // WRITE TRANSPARENT DCC PACKET PROG

// Re-parse the command using a hex-only splitter params=splitHexValues(p,com)-1; // drop REG if (params<1) break; { byte packet[params]; for (int i=0;i if (!stashCallback(stream, p, ringStream)) break; if (params == 1) // Write new loco id (clearing consist and managing short/long) DCC::setLocoId(p[0],callback_Wloco); else // WRITE CV ON PROG DCC::writeCVByte(p[0], p[1], callback_W); return; case 'V': // VERIFY CV ON PROG if (params == 2) { // if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVByte(p[0], p[1], callback_Vbyte); return; } if (params == 3) { if (!stashCallback(stream, p, ringStream)) break; DCC::verifyCVBit(p[0], p[1], p[2], callback_Vbit); return; } break; case 'B': // WRITE CV BIT ON PROG if (!stashCallback(stream, p, ringStream)) break; DCC::writeCVBit(p[0], p[1], p[2], callback_B); return; case 'R': // READ CV ON PROG if (params == 3) { // if (!stashCallback(stream, p, ringStream)) break; DCC::readCV(p[0], callback_R); return; } if (params == 0) { // New read loco id if (!stashCallback(stream, p, ringStream)) break; DCC::getLocoId(callback_Rloco); return; } break; case '1': // POWERON <1 [MAIN|PROG]> case '0': // POWEROFF <0 [MAIN | PROG] > if (params > 1) break; { POWERMODE mode = opcode == '1' ? POWERMODE::ON : POWERMODE::OFF; DCC::setProgTrackSyncMain(false); // Only <1 JOIN> will set this on, all others set it off if (params == 0 || (MotorDriver::commonFaultPin && p[0] != HASH_KEYWORD_JOIN)) // commonFaultPin prevents individual track handling { DCCWaveform::mainTrack.setPowerMode(mode); DCCWaveform::progTrack.setPowerMode(mode); if (mode == POWERMODE::OFF) DCC::setProgTrackBoost(false); // Prog track boost mode will not outlive prog track off StringFormatter::send(stream, F("\n"), opcode); StringFormatter::lcd(2, F("p%c"), opcode); return; } switch (p[0]) { case HASH_KEYWORD_MAIN: DCCWaveform::mainTrack.setPowerMode(mode); StringFormatter::send(stream, F("\n"), opcode); StringFormatter::lcd(2, F("p%c MAIN"), opcode); return; case HASH_KEYWORD_PROG: DCCWaveform::progTrack.setPowerMode(mode); if (mode == POWERMODE::OFF) DCC::setProgTrackBoost(false); // Prog track boost mode will not outlive prog track off StringFormatter::send(stream, F("\n"), opcode); StringFormatter::lcd(2, F("p%c PROG"), opcode); return; case HASH_KEYWORD_JOIN: DCCWaveform::mainTrack.setPowerMode(mode); DCCWaveform::progTrack.setPowerMode(mode); if (mode == POWERMODE::ON) { DCC::setProgTrackSyncMain(true); StringFormatter::send(stream, F("\n"), opcode); StringFormatter::lcd(2, F("p1 JOIN")); } else { StringFormatter::send(stream, F("\n")); StringFormatter::lcd(2, F("p0")); } return; } break; } return; case '!': // ESTOP ALL DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1. return; case 'c': // SEND METER RESPONSES // StringFormatter::send(stream, F("\n"), DCCWaveform::mainTrack.getCurrentmA(), DCCWaveform::mainTrack.getMaxmA(), DCCWaveform::mainTrack.getTripmA()); StringFormatter::send(stream, F("\n"), DCCWaveform::mainTrack.get1024Current()); //'a' message deprecated, remove once JMRI 4.22 is available return; case 'Q': // SENSORS Sensor::printAll(stream); return; case 's': // StringFormatter::send(stream, F("\n"), DCCWaveform::mainTrack.getPowerMode() == POWERMODE::ON); StringFormatter::send(stream, F("\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA)); Turnout::printAll(stream); //send all Turnout states Output::printAll(stream); //send all Output states Sensor::printAll(stream); //send all Sensor states // TODO Send stats of speed reminders table return; case 'E': // STORE EPROM EEStore::store(); StringFormatter::send(stream, F("\n"), EEStore::eeStore->data.nTurnouts, EEStore::eeStore->data.nSensors, EEStore::eeStore->data.nOutputs); return; case 'e': // CLEAR EPROM EEStore::clear(); StringFormatter::send(stream, F("\n")); return; case ' ': // < > StringFormatter::send(stream, F("\n")); return; case 'D': // < > if (parseD(stream, params, p)) return; return; case '#': // NUMBER OF LOCOSLOTS <#> StringFormatter::send(stream, F("<# %d>\n"), MAX_LOCOS); return; case '-': // Forget Loco <- [cab]> if (params > 1 || p[0]<0) break; if (p[0]==0) DCC::forgetAllLocos(); else DCC::forgetLoco(p[0]); return; case 'F': // New command to call the new Loco Function API if (Diag::CMD) DIAG(F("Setting loco %d F%d %S"), p[0], p[1], p[2] ? F("ON") : F("OFF")); DCC::setFn(p[0], p[1], p[2] == 1); return; case '+': // Complex Wifi interface command (not usual parse) if (atCommandCallback) { DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF); DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF); atCommandCallback(com); return; } break; default: //anything else will diagnose and drop out to DIAG(F("Opcode=%c params=%d"), opcode, params); for (int i = 0; i < params; i++) DIAG(F("p[%d]=%d (0x%x)"), i, p[i], p[i]); break; } // end of opcode switch // Any fallout here sends an StringFormatter::send(stream, F("\n")); } bool DCCEXParser::parseZ(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 2: // { Output *o = Output::get(p[0]); if (o == NULL) return false; o->activate(p[1]); StringFormatter::send(stream, F("\n"), p[0], p[1]); } return true; case 3: // if (p[0] < 0 || p[1] > 255 || p[1] <= 1 || // Pins 0 and 1 are Serial to USB p[2] < 0 || p[2] > 7 ) return false; if (!Output::create(p[0], p[1], p[2], 1)) return false; StringFormatter::send(stream, F("\n")); return true; case 1: // if (!Output::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 0: // list Output definitions { bool gotone = false; for (Output *tt = Output::firstOutput; tt != NULL; tt = tt->nextOutput) { gotone = true; StringFormatter::send(stream, F("\n"), tt->data.id, tt->data.pin, tt->data.iFlag, tt->data.oStatus); } return gotone; } default: return false; } } //=================================== bool DCCEXParser::parsef(Print *stream, int16_t params, int16_t p[]) { // JMRI sends this info in DCC message format but it's not exactly // convenient for other processing if (params == 2) { byte instructionField = p[1] & 0xE0; // 1110 0000 if (instructionField == 0x80) // 1000 0000 Function group 1 { // Shuffle bits from order F0 F4 F3 F2 F1 to F4 F3 F2 F1 F0 byte normalized = (p[1] << 1 & 0x1e) | (p[1] >> 4 & 0x01); funcmap(p[0], normalized, 0, 4); } else if (instructionField == 0xA0) // 1010 0000 Function group 2 { if (p[1] & 0x10) // 0001 0000 Bit selects F5toF8 / F9toF12 funcmap(p[0], p[1], 5, 8); else funcmap(p[0], p[1], 9, 12); } } if (params == 3) { if (p[1] == 222) funcmap(p[0], p[2], 13, 20); else if (p[1] == 223) funcmap(p[0], p[2], 21, 28); } (void)stream; // NO RESPONSE return true; } void DCCEXParser::funcmap(int16_t cab, byte value, byte fstart, byte fstop) { for (int16_t i = fstart; i <= fstop; i++) { DCC::setFn(cab, i, value & 1); value >>= 1; } } //=================================== bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 0: // list turnout definitions { bool gotOne = false; for (Turnout *tt = Turnout::firstTurnout; tt != NULL; tt = tt->nextTurnout) { gotOne = true; StringFormatter::send(stream, F("\n"), tt->data.id, tt->data.address, tt->data.subAddress, (tt->data.tStatus & STATUS_ACTIVE)!=0); } return gotOne; // will if none found } case 1: // delete turnout if (!Turnout::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 2: // activate turnout { Turnout *tt = Turnout::get(p[0]); if (!tt) return false; tt->activate(p[1]); StringFormatter::send(stream, F("\n"), tt->data.id, (tt->data.tStatus & STATUS_ACTIVE)!=0); } return true; case 3: // define turnout if (!Turnout::create(p[0], p[1], p[2])) return false; StringFormatter::send(stream, F("\n")); return true; default: return false; // will } } bool DCCEXParser::parseS(Print *stream, int16_t params, int16_t p[]) { switch (params) { case 3: // create sensor. pullUp indicator (0=LOW/1=HIGH) if (!Sensor::create(p[0], p[1], p[2])) return false; StringFormatter::send(stream, F("\n")); return true; case 1: // S id> remove sensor if (!Sensor::remove(p[0])) return false; StringFormatter::send(stream, F("\n")); return true; case 0: // list sensor definitions if (Sensor::firstSensor == NULL) return false; for (Sensor *tt = Sensor::firstSensor; tt != NULL; tt = tt->nextSensor) { StringFormatter::send(stream, F("\n"), tt->data.snum, tt->data.pin, tt->data.pullUp); } return true; default: // invalid number of arguments break; } return false; } bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[]) { if (params == 0) return false; bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off switch (p[0]) { case HASH_KEYWORD_CABS: // DCC::displayCabList(stream); return true; case HASH_KEYWORD_RAM: // StringFormatter::send(stream, F("Free memory=%d\n"), minimumFreeMemory()); break; case HASH_KEYWORD_ACK: // if (params >= 3) { if (p[1] == HASH_KEYWORD_LIMIT) { DCCWaveform::progTrack.setAckLimit(p[2]); StringFormatter::lcd(1, F("Ack Limit=%dmA"), p[2]); // } else if (p[1] == HASH_KEYWORD_MIN) { DCCWaveform::progTrack.setMinAckPulseDuration(p[2]); StringFormatter::lcd(0, F("Ack Min=%dus"), p[2]); // } else if (p[1] == HASH_KEYWORD_MAX) { DCCWaveform::progTrack.setMaxAckPulseDuration(p[2]); StringFormatter::lcd(0, F("Ack Max=%dus"), p[2]); // } else if (p[1] == HASH_KEYWORD_RETRY) { if (p[2] >255) p[2]=3; DCC::setAckRetry(p[2]); StringFormatter::lcd(0, F("Ack Retry=%d"), p[2]); // } } else { StringFormatter::send(stream, F("Ack diag %S\n"), onOff ? F("on") : F("off")); Diag::ACK = onOff; } return true; case HASH_KEYWORD_CMD: // Diag::CMD = onOff; return true; #ifdef HAS_ENOUGH_MEMORY case HASH_KEYWORD_WIFI: // Diag::WIFI = onOff; return true; case HASH_KEYWORD_ETHERNET: // Diag::ETHERNET = onOff; return true; case HASH_KEYWORD_WIT: // Diag::WITHROTTLE = onOff; return true; case HASH_KEYWORD_LCN: // Diag::LCN = onOff; return true; #endif case HASH_KEYWORD_PROGBOOST: DCC::setProgTrackBoost(true); return true; case HASH_KEYWORD_RESET: { wdt_enable( WDTO_15MS); // set Arduino watchdog timer for 15ms delay(50); // wait for the prescaller time to expire break; // and if we didnt restart } case HASH_KEYWORD_EEPROM: // if (params >= 2) EEStore::dump(p[1]); return true; case HASH_KEYWORD_SPEED28: DCC::setGlobalSpeedsteps(28); StringFormatter::send(stream, F("28 Speedsteps")); return true; case HASH_KEYWORD_SPEED128: DCC::setGlobalSpeedsteps(128); StringFormatter::send(stream, F("128 Speedsteps")); return true; default: // invalid/unknown break; } return false; } // CALLBACKS must be static bool DCCEXParser::stashCallback(Print *stream, int16_t p[MAX_COMMAND_PARAMS], RingStream * ringStream) { if (stashBusy ) return false; stashBusy = true; stashStream = stream; stashRingStream=ringStream; if (ringStream) stashTarget= ringStream->peekTargetMark(); memcpy(stashP, p, MAX_COMMAND_PARAMS * sizeof(p[0])); return true; } Print * DCCEXParser::getAsyncReplyStream() { if (stashRingStream) { stashRingStream->mark(stashTarget); return stashRingStream; } return stashStream; } void DCCEXParser::commitAsyncReplyStream() { if (stashRingStream) stashRingStream->commit(); stashBusy = false; } void DCCEXParser::callback_W(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[2], stashP[3], stashP[0], result == 1 ? stashP[1] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_B(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[3], stashP[4], stashP[0], stashP[1], result == 1 ? stashP[2] : -1); commitAsyncReplyStream(); } void DCCEXParser::callback_Vbit(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], stashP[1], result); commitAsyncReplyStream(); } void DCCEXParser::callback_Vbyte(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[0], result); commitAsyncReplyStream(); } void DCCEXParser::callback_R(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), stashP[1], stashP[2], stashP[0], result); commitAsyncReplyStream(); } void DCCEXParser::callback_Rloco(int16_t result) { StringFormatter::send(getAsyncReplyStream(), F("\n"), result); commitAsyncReplyStream(); } void DCCEXParser::callback_Wloco(int16_t result) { if (result==1) result=stashP[0]; // pick up original requested id from command StringFormatter::send(getAsyncReplyStream(), F("\n"), result); commitAsyncReplyStream(); }