/* * © 2021, Neil McKechnie. All rights reserved. * Based on the work by DFRobot, Frank de Brabander and Marco Schwartz. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "LiquidCrystal_I2C.h" #include "I2CManager.h" #include #if defined(ARDUINO) && ARDUINO >= 100 #include "Arduino.h" #define printIIC(args) Wire.write(args) inline size_t LiquidCrystal_I2C::write(uint8_t value) { send(value, Rs); return 1; } #else #include "WProgram.h" #define printIIC(args) Wire.send(args) inline void LiquidCrystal_I2C::write(uint8_t value) { send(value, Rs); } #endif #include "Wire.h" // When the display powers up, it is configured as follows: // // 1. Display clear // 2. Function set: // DL = 1; 8-bit interface data // N = 0; 1-line display // F = 0; 5x8 dot character font // 3. Display on/off control: // D = 0; Display off // C = 0; Cursor off // B = 0; Blinking off // 4. Entry mode set: // I/D = 1; Increment by 1 // S = 0; No shift // // Note, however, that resetting the Arduino doesn't reset the LCD, so we // can't assume that its in that state when a sketch starts (and the // LiquidCrystal constructor is called). LiquidCrystal_I2C::LiquidCrystal_I2C(uint8_t lcd_Addr, uint8_t lcd_cols, uint8_t lcd_rows) { _Addr = lcd_Addr; _cols = lcd_cols; _rows = lcd_rows; _backlightval = LCD_NOBACKLIGHT; } void LiquidCrystal_I2C::init() { init_priv(); } void LiquidCrystal_I2C::init_priv() { I2CManager.begin(); I2CManager.setClock(100000L); // PCF8574 is limited to 100kHz. _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS; begin(_cols, _rows); } void LiquidCrystal_I2C::begin(uint8_t cols, uint8_t lines) { if (lines > 1) { _displayfunction |= LCD_2LINE; } _numlines = lines; (void)cols; // Suppress compiler warning. // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION! // according to datasheet, we need at least 40ms after power rises above 2.7V // before sending commands. Arduino can turn on way befer 4.5V so we'll allow // 100 milliseconds after pulling both RS and R/W and backlight pin low expanderWrite( _backlightval); // reset expander and turn backlight off (Bit 8 =1) delay(100); // put the LCD into 4 bit mode // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode write4bits(0x03 << 4); delayMicroseconds(4500); // wait min 4.1ms // second try write4bits(0x03 << 4); delayMicroseconds(4500); // wait min 4.1ms // third go! write4bits(0x03 << 4); delayMicroseconds(150); // finally, set to 4-bit interface write4bits(0x02 << 4); // set # lines, font size, etc. command(LCD_FUNCTIONSET | _displayfunction); // turn the display on with no cursor or blinking default _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF; display(); // clear it off clear(); // Initialize to default text direction (for roman languages) _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT; // set the entry mode command(LCD_ENTRYMODESET | _displaymode); setCursor(0, 0); } /********** high level commands, for the user! */ void LiquidCrystal_I2C::clear() { command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero delayMicroseconds(2000); // this command takes 1.52ms } void LiquidCrystal_I2C::setCursor(uint8_t col, uint8_t row) { int row_offsets[] = {0x00, 0x40, 0x14, 0x54}; if (row > _numlines) { row = _numlines - 1; // we count rows starting w/0 } command(LCD_SETDDRAMADDR | (col + row_offsets[row])); } // Turn the display on/off (quickly) void LiquidCrystal_I2C::noDisplay() { _displaycontrol &= ~LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void LiquidCrystal_I2C::display() { _displaycontrol |= LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turn the (optional) backlight off/on void LiquidCrystal_I2C::noBacklight(void) { _backlightval = LCD_NOBACKLIGHT; expanderWrite(0); } void LiquidCrystal_I2C::backlight(void) { _backlightval = LCD_BACKLIGHT; expanderWrite(0); } void LiquidCrystal_I2C::setBacklight(uint8_t new_val) { if (new_val) { backlight(); // turn backlight on } else { noBacklight(); // turn backlight off } } void LiquidCrystal_I2C::printstr(const char c[]) { // This function is not identical to the function used for "real" I2C displays // it's here so the user sketch doesn't have to be changed print(c); } /*********** mid level commands, for sending data/cmds */ inline void LiquidCrystal_I2C::command(uint8_t value) { send(value, 0); } /************ low level data pushing commands **********/ /* According to the NXP Datasheet for the PCF8574 section 8.2: * "The master (microcontroller) sends the START condition and slave address * setting the last bit of the address byte to logic 0 for the write mode. * The PCF8574/74A acknowledges and the master then sends the data byte for * P7 to P0 to the port register. As the clock line goes HIGH, the 8-bit * data is presented on the port lines after it has been acknowledged by the * PCF8574/74A. [...] The master can then send a STOP or ReSTART condition * or continue sending data. The number of data bytes that can be sent * successively is not limited and the previous data is overwritten every * time a data byte has been sent and acknowledged." * * This driver takes advantage of this by sending multiple data bytes in succession * within a single I2C transmission. With a fast clock rate of 400kHz, the time * between successive updates of the PCF8574 outputs will be at least 2.5us. With * the default clock rate of 100kHz the time between updates will be at least 10us. * * The LCD controller HD44780, according to its datasheet, needs nominally 37us * (up to 50us) to execute a command (i.e. write to gdram, reposition, etc.). Each * command is sent in a separate I2C transmission here. The time taken to end a * transmission and start another one is a stop bit, a start bit, 8 address bits, * an ack, 8 data bits and another ack; this is at least 20 bits, i.e. >50us * at 400kHz and >200us at 100kHz. Therefore, we don't need additional delay. */ // write either command or data (8 bits) to the HD44780 as // a single I2C transmission. void LiquidCrystal_I2C::send(uint8_t value, uint8_t mode) { uint8_t highnib = value & 0xf0; uint8_t lownib = (value << 4) & 0xf0; // Send both nibbles Wire.beginTransmission(_Addr); write4bits(highnib | mode, true); write4bits(lownib | mode, true); Wire.endTransmission(); } // write 4 bits to the HD44780 interface. If inTransmission is false // then the nibble will be sent in its own I2C transmission. void LiquidCrystal_I2C::write4bits(uint8_t value, bool inTransmission) { int _data = (int)value | _backlightval; if (!inTransmission) Wire.beginTransmission(_Addr); // Enable must be set/reset for at least 450ns. This is well within the // I2C clock cycle time of 2.5us at 400kHz. Data is clocked in to the // HD44780 on the trailing edge of the Enable pin. printIIC(_data | En); printIIC(_data); if (!inTransmission) Wire.endTransmission(); } // write a byte to the PCF8574 I2C interface void LiquidCrystal_I2C::expanderWrite(uint8_t value) { int _data = (int)value | _backlightval; Wire.beginTransmission(_Addr); printIIC(_data); Wire.endTransmission(); }