/* * © 2022 Paul M. Antoine * © 2021 Mike S * © 2021-2022 Harald Barth * © 2021 Fred Decker * © 2021 Chris Harlow * © 2021 David Cutting * All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ // ATTENTION: this file only compiles on a SAMD21 based board // Please refer to DCCTimer.h for general comments about how this class works // This is to avoid repetition and duplication. #ifdef ARDUINO_ARCH_SAMD #include "DCCTimer.h" #include INTERRUPT_CALLBACK interruptHandler=0; void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); // Timer setup - setup clock sources first REG_GCLK_GENDIV = GCLK_GENDIV_DIV(1) | // Divide 48MHz by 1 GCLK_GENDIV_ID(4); // Apply to GCLK4 while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization REG_GCLK_GENCTRL = GCLK_GENCTRL_GENEN | // Enable GCLK GCLK_GENCTRL_SRC_DFLL48M | // Set the 48MHz clock source GCLK_GENCTRL_ID(4); // Select GCLK4 while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization REG_GCLK_CLKCTRL = GCLK_CLKCTRL_CLKEN | // Enable generic clock 4 << GCLK_CLKCTRL_GEN_Pos | // Apply to GCLK4 GCLK_CLKCTRL_ID_TCC0_TCC1; // Feed GCLK to TCC0/1 while (GCLK->STATUS.bit.SYNCBUSY); // Assume we're using TCC0... as we're bit-bashing the DCC waveform output pins anyway // for "normal accuracy" DCC waveform generation. For high accuracy we're going to need // to a good deal more. The TCC waveform output pins are mux'd on the SAMD, and output // pins for each TCC are only available on certain pins TCC0->WAVE.reg = TCC_WAVE_WAVEGEN_NPWM; // Select NPWM as waveform while (TCC0->SYNCBUSY.bit.WAVE); // Wait for sync // Set the frequency TCC0->CTRLA.reg |= TCC_CTRLA_PRESCALER(TCC_CTRLA_PRESCALER_DIV1_Val); TCC0->PER.reg = CLOCK_CYCLES * 2; while (TCC0->SYNCBUSY.bit.PER); // Start the timer TCC0->CTRLA.bit.ENABLE = 1; while (TCC0->SYNCBUSY.bit.ENABLE); // Set the interrupt condition, priority and enable it in the NVIC TCC0->INTENSET.reg = TCC_INTENSET_OVF; // Only interrupt on overflow int USBprio = NVIC_GetPriority((IRQn_Type) USB_IRQn); // Fetch the USB priority NVIC_SetPriority((IRQn_Type)TCC0_IRQn, USBprio); // Match the USB priority // NVIC_SetPriority((IRQn_Type)TCC0_IRQn, 0); // Make this highest priority NVIC_EnableIRQ((IRQn_Type)TCC0_IRQn); // Enable the interrupt interrupts(); } void DCCTimer::startRailcomTimer(byte brakePin) { // TODO: for intended operation see DCCTimerAVR.cpp (void) brakePin; } void DCCTimer::ackRailcomTimer() { // TODO: for intended operation see DCCTimerAVR.cpp } // Timer IRQ handlers replace the dummy handlers (in cortex_handlers) // copied from rf24 branch void TCC0_Handler() { if(TCC0->INTFLAG.bit.OVF) { TCC0->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag interruptHandler(); } } void TCC1_Handler() { if(TCC1->INTFLAG.bit.OVF) { TCC1->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag interruptHandler(); } } void TCC2_Handler() { if(TCC2->INTFLAG.bit.OVF) { TCC2->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag interruptHandler(); } } bool DCCTimer::isPWMPin(byte pin) { //TODO: SAMD whilst this call to digitalPinHasPWM will reveal which pins can do PWM, // there's no support yet for High Accuracy, so for now return false // return digitalPinHasPWM(pin); return false; } void DCCTimer::setPWM(byte pin, bool high) { // TODO: High Accuracy mode is not supported as yet, and may never need to be (void) pin; (void) high; } void DCCTimer::clearPWM() { return; } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { volatile uint32_t *serno1 = (volatile uint32_t *)0x0080A00C; volatile uint32_t *serno2 = (volatile uint32_t *)0x0080A040; // volatile uint32_t *serno3 = (volatile uint32_t *)0x0080A044; // volatile uint32_t *serno4 = (volatile uint32_t *)0x0080A048; volatile uint32_t m1 = *serno1; volatile uint32_t m2 = *serno2; mac[0] = m1 >> 8; mac[1] = m1 >> 0; mac[2] = m2 >> 24; mac[3] = m2 >> 16; mac[4] = m2 >> 8; mac[5] = m2 >> 0; } volatile int DCCTimer::minimum_free_memory=__INT_MAX__; // Return low memory value... int DCCTimer::getMinimumFreeMemory() { noInterrupts(); // Disable interrupts to get volatile value int retval = freeMemory(); interrupts(); return retval; } extern "C" char* sbrk(int incr); int DCCTimer::freeMemory() { char top; return (int)(&top - reinterpret_cast(sbrk(0))); } void DCCTimer::reset() { __disable_irq(); NVIC_SystemReset(); while(true) {}; } #define NUM_ADC_INPUTS NUM_ANALOG_INPUTS uint16_t ADCee::usedpins = 0; int * ADCee::analogvals = NULL; int ADCee::init(uint8_t pin) { uint8_t id = pin - A0; int value = 0; if (id > NUM_ADC_INPUTS) return -1023; // Permanently configure SAMD IO MUX for that pin pinPeripheral(pin, PIO_ANALOG); ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[pin].ulADCChannelNumber; // Selection for the positive ADC input // Start conversion ADC->SWTRIG.bit.START = 1; // Wait for the conversion to be ready while (ADC->INTFLAG.bit.RESRDY == 0); // Waiting for conversion to complete // Read the value value = ADC->RESULT.reg; if (analogvals == NULL) analogvals = (int *)calloc(NUM_ADC_INPUTS+1, sizeof(int)); analogvals[id] = value; usedpins |= (1<INTFLAG.bit.RESRDY == 0) return; // no result, continue to wait // found value analogvals[id] = ADC->RESULT.reg; // advance at least one track // for scope debug TrackManager::track[1]->setBrake(0); waiting = false; id++; mask = mask << 1; if (id == NUM_ADC_INPUTS+1) { id = 0; mask = 1; } } if (!waiting) { if (usedpins == 0) // otherwise we would loop forever return; // look for a valid track to sample or until we are around while (true) { if (mask & usedpins) { // start new ADC aquire on id ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[id + A0].ulADCChannelNumber; // Selection for the positive ADC input // Start conversion ADC->SWTRIG.bit.START = 1; // for scope debug TrackManager::track[1]->setBrake(1); waiting = true; return; } id++; mask = mask << 1; if (id == NUM_ADC_INPUTS+1) { id = 0; mask = 1; } } } } #pragma GCC pop_options void ADCee::begin() { noInterrupts(); // Set up ADC to do faster reads... default for Arduino Zero platform configs is 436uS, // and we need sub-58uS. This code sets it to a read speed of around 5-6uS, and enables // 12-bit mode // Reconfigure ADC ADC->CTRLA.bit.ENABLE = 0; // disable ADC while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization ADC->CTRLB.reg &= 0b1111100011001111; // mask PRESCALER and RESSEL bits ADC->CTRLB.reg |= ADC_CTRLB_PRESCALER_DIV64 | // divide Clock by 16 ADC_CTRLB_RESSEL_12BIT; // Result 12 bits, 10 bits possible ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // take 1 sample at a time ADC_AVGCTRL_ADJRES(0x00ul); // adjusting result by 0 ADC->SAMPCTRL.reg = 0x00ul; // sampling Time Length = 0 ADC->CTRLA.bit.ENABLE = 1; // enable ADC while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization interrupts(); } #endif