/* * © 2022-24 Paul M Antoine * © 2023, Neil McKechnie * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see <https://www.gnu.org/licenses/>. */ #ifndef I2CMANAGER_STM32_H #define I2CMANAGER_STM32_H #include <Arduino.h> #include "I2CManager.h" #include "I2CManager_NonBlocking.h" // to satisfy intellisense #include <wiring_private.h> #include "stm32f4xx_hal_rcc.h" /***************************************************************************** * STM32F4xx I2C native driver support * * Nucleo-64 and Nucleo-144 boards all use I2C1 as the default I2C peripheral * Later we may wish to support other STM32 boards, allow use of an alternate * I2C bus, or more than one I2C bus on the STM32 architecture *****************************************************************************/ #if defined(I2C_USE_INTERRUPTS) && defined(ARDUINO_ARCH_STM32) #if defined(ARDUINO_NUCLEO_F401RE) || defined(ARDUINO_NUCLEO_F411RE) || defined(ARDUINO_NUCLEO_F446RE) \ || defined(ARDUINO_NUCLEO_F412ZG) || defined(ARDUINO_NUCLEO_F413ZH) || defined(ARDUINO_NUCLEO_F446ZE) \ || defined(ARDUINO_NUCLEO_F429ZI) || defined(ARDUINO_NUCLEO_F439ZI) || defined(ARDUINO_NUCLEO_F4X9ZI) // Assume I2C1 for now - default I2C bus on Nucleo-F411RE and likely all Nucleo-64 // and Nucleo-144 variants I2C_TypeDef *s = I2C1; // In init we will ask the STM32 HAL layer for the configured APB1 clock frequency in Hz uint32_t APB1clk1; // Peripheral Input Clock speed in Hz. uint32_t i2c_MHz; // Peripheral Input Clock speed in MHz. // IRQ handler for I2C1, replacing the weak definition in the STM32 HAL extern "C" void I2C1_EV_IRQHandler(void) { I2CManager.handleInterrupt(); } extern "C" void I2C1_ER_IRQHandler(void) { I2CManager.handleInterrupt(); } #else #warning STM32 board selected is not yet supported - so I2C1 peripheral is not defined #endif #endif // Peripheral Input Clock speed in MHz. // For STM32F446RE, the speed is 45MHz. Ideally, this should be determined // at run-time from the APB1 clock, as it can vary from STM32 family to family. // #define I2C_PERIPH_CLK 45 // I2C SR1 Status Register #1 bit definitions for convenience // #define I2C_SR1_SMBALERT (1<<15) // SMBus alert // #define I2C_SR1_TIMEOUT (1<<14) // Timeout of Tlow error // #define I2C_SR1_PECERR (1<<12) // PEC error in reception // #define I2C_SR1_OVR (1<<11) // Overrun/Underrun error // #define I2C_SR1_AF (1<<10) // Acknowledge failure // #define I2C_SR1_ARLO (1<<9) // Arbitration lost (master mode) // #define I2C_SR1_BERR (1<<8) // Bus error (misplaced start or stop condition) // #define I2C_SR1_TxE (1<<7) // Data register empty on transmit // #define I2C_SR1_RxNE (1<<6) // Data register not empty on receive // #define I2C_SR1_STOPF (1<<4) // Stop detection (slave mode) // #define I2C_SR1_ADD10 (1<<3) // 10 bit header sent // #define I2C_SR1_BTF (1<<2) // Byte transfer finished - data transfer done // #define I2C_SR1_ADDR (1<<1) // Address sent (master) or matched (slave) // #define I2C_SR1_SB (1<<0) // Start bit (master mode) 1=start condition generated // I2C CR1 Control Register #1 bit definitions for convenience // #define I2C_CR1_SWRST (1<<15) // Software reset - places peripheral under reset // #define I2C_CR1_ALERT (1<<13) // SMBus alert assertion // #define I2C_CR1_PEC (1<<12) // Packet Error Checking transfer in progress // #define I2C_CR1_POS (1<<11) // Acknowledge/PEC Postion (for data reception in PEC mode) // #define I2C_CR1_ACK (1<<10) // Acknowledge enable - ACK returned after byte is received (address or data) // #define I2C_CR1_STOP (1<<9) // STOP generated // #define I2C_CR1_START (1<<8) // START generated // #define I2C_CR1_NOSTRETCH (1<<7) // Clock stretching disable (slave mode) // #define I2C_CR1_ENGC (1<<6) // General call (broadcast) enable (address 00h is ACKed) // #define I2C_CR1_ENPEC (1<<5) // PEC Enable // #define I2C_CR1_ENARP (1<<4) // ARP enable (SMBus) // #define I2C_CR1_SMBTYPE (1<<3) // SMBus type, 1=host, 0=device // #define I2C_CR1_SMBUS (1<<1) // SMBus mode, 1=SMBus, 0=I2C // #define I2C_CR1_PE (1<<0) // I2C Peripheral enable // States of the STM32 I2C driver state machine enum {TS_IDLE,TS_START,TS_W_ADDR,TS_W_DATA,TS_W_STOP,TS_R_ADDR,TS_R_DATA,TS_R_STOP}; /*************************************************************************** * Set I2C clock speed register. This should only be called outside of * a transmission. The I2CManagerClass::_setClock() function ensures * that it is only called at the beginning of an I2C transaction. ***************************************************************************/ void I2CManagerClass::I2C_setClock(uint32_t i2cClockSpeed) { // Calculate a rise time appropriate to the requested bus speed // Use 10x the rise time spec to enable integer divide of 50ns clock period uint16_t t_rise; while (s->CR1 & I2C_CR1_STOP); // Prevents lockup by guarding further // writes to CR1 while STOP is being executed! // Disable the I2C device, as TRISE can only be programmed whilst disabled s->CR1 &= ~(I2C_CR1_PE); // Disable I2C s->CR1 |= I2C_CR1_SWRST; // reset the I2C asm("nop"); // wait a bit... suggestion from online! s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation if (i2cClockSpeed > 100000UL) { // if (i2cClockSpeed > 400000L) // i2cClockSpeed = 400000L; t_rise = 300; // nanoseconds } else { // i2cClockSpeed = 100000L; t_rise = 1000; // nanoseconds } // Configure the rise time register - max allowed tRISE is 1000ns, // so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1. s->TRISE = (t_rise * i2c_MHz / 1000) + 1; // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 14: Duty, fast mode duty cycle (use 2:1) // Bit 11-0: FREQR // if (i2cClockSpeed > 400000UL) { // // In fast mode plus, I2C period is 3 * CCR * TPCLK1. // // s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value // s->CCR = APB1clk1 / 3 / i2cClockSpeed; // Set I2C clockspeed to start! // s->CCR |= 0xC000; // We need Fast Mode AND DUTY bits set // } else { // In standard and fast mode, I2C period is 2 * CCR * TPCLK1 s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value s->CCR |= (APB1clk1 / 2 / i2cClockSpeed); // Set I2C clockspeed to start! // s->CCR |= (i2c_MHz * 500 / (i2cClockSpeed / 1000)); // Set I2C clockspeed to start! // if (i2cClockSpeed > 100000UL) // s->CCR |= 0xC000; // We need Fast Mode bits set as well // } // DIAG(F("I2C_init() peripheral clock is now: %d, full reg is %x"), (s->CR2 & 0xFF), s->CR2); // DIAG(F("I2C_init() peripheral CCR is now: %d"), s->CCR); // DIAG(F("I2C_init() peripheral TRISE is now: %d"), s->TRISE); // Enable the I2C master mode s->CR1 |= I2C_CR1_PE; // Enable I2C } /*************************************************************************** * Initialise I2C registers. ***************************************************************************/ void I2CManagerClass::I2C_init() { // Query the clockspeed from the STM32 HAL layer APB1clk1 = HAL_RCC_GetPCLK1Freq(); i2c_MHz = APB1clk1 / 1000000UL; // DIAG(F("I2C_init() peripheral clock speed is: %d"), i2c_MHz); // Enable clocks RCC->APB1ENR |= RCC_APB1ENR_I2C1EN;//(1 << 21); // Enable I2C CLOCK // Reset the I2C1 peripheral to initial state RCC->APB1RSTR |= RCC_APB1RSTR_I2C1RST; RCC->APB1RSTR &= ~RCC_APB1RSTR_I2C1RST; // Standard I2C pins are SCL on PB8 and SDA on PB9 RCC->AHB1ENR |= (1<<1); // Enable GPIOB CLOCK for PB8/PB9 // Bits (17:16)= 1:0 --> Alternate Function for Pin PB8; // Bits (19:18)= 1:0 --> Alternate Function for Pin PB9 GPIOB->MODER &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all MODER bits for PB8 and PB9 GPIOB->MODER |= (2<<(8*2)) | (2<<(9*2)); // PB8 and PB9 set to ALT function GPIOB->OTYPER |= (1<<8) | (1<<9); // PB8 and PB9 set to open drain output capability GPIOB->OSPEEDR |= (3<<(8*2)) | (3<<(9*2)); // PB8 and PB9 set to High Speed mode GPIOB->PUPDR &= ~((3<<(8*2)) | (3<<(9*2))); // Clear all PUPDR bits for PB8 and PB9 // GPIOB->PUPDR |= (1<<(8*2)) | (1<<(9*2)); // PB8 and PB9 set to pull-up capability // Alt Function High register routing pins PB8 and PB9 for I2C1: // Bits (3:2:1:0) = 0:1:0:0 --> AF4 for pin PB8 // Bits (7:6:5:4) = 0:1:0:0 --> AF4 for pin PB9 GPIOB->AFR[1] &= ~((15<<0) | (15<<4)); // Clear all AFR bits for PB8 on low nibble, PB9 on next nibble up GPIOB->AFR[1] |= (4<<0) | (4<<4); // PB8 on low nibble, PB9 on next nibble up // Software reset the I2C peripheral I2C1->CR1 &= ~I2C_CR1_PE; // Disable I2C1 peripheral s->CR1 |= I2C_CR1_SWRST; // reset the I2C asm("nop"); // wait a bit... suggestion from online! s->CR1 &= ~(I2C_CR1_SWRST); // Normal operation // Clear all bits in I2C CR2 register except reserved bits s->CR2 &= 0xE000; // Set I2C peripheral clock frequency // s->CR2 |= I2C_PERIPH_CLK; s->CR2 |= i2c_MHz; // DIAG(F("I2C_init() peripheral clock is now: %d"), s->CR2); // set own address to 00 - not used in master mode I2C1->OAR1 = (1 << 14); // bit 14 should be kept at 1 according to the datasheet #if defined(I2C_USE_INTERRUPTS) // Setting NVIC NVIC_SetPriority(I2C1_EV_IRQn, 1); // Match default priorities NVIC_EnableIRQ(I2C1_EV_IRQn); NVIC_SetPriority(I2C1_ER_IRQn, 1); // Match default priorities NVIC_EnableIRQ(I2C1_ER_IRQn); // CR2 Interrupt Settings // Bit 15-13: reserved // Bit 12: LAST - DMA last transfer // Bit 11: DMAEN - DMA enable // Bit 10: ITBUFEN - Buffer interrupt enable // Bit 9: ITEVTEN - Event interrupt enable // Bit 8: ITERREN - Error interrupt enable // Bit 7-6: reserved // Bit 5-0: FREQ - Peripheral clock frequency (max 50MHz) s->CR2 |= (I2C_CR2_ITBUFEN | I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable Buffer, Event and Error interrupts #endif // DIAG(F("I2C_init() setting initial I2C clock to 100KHz")); // Calculate baudrate and set default rate for now // Configure the Clock Control Register for 100KHz SCL frequency // Bit 15: I2C Master mode, 0=standard, 1=Fast Mode // Bit 14: Duty, fast mode duty cycle // Bit 11-0: so CCR divisor would be clk / 2 / 100000 (where clk is in Hz) // s->CCR = I2C_PERIPH_CLK * 5; s->CCR &= ~(0x3000); // Clear all bits except 12 and 13 which must remain per reset value s->CCR |= (APB1clk1 / 2 / 100000UL); // Set a default of 100KHz I2C clockspeed to start! // Configure the rise time register - max allowed is 1000ns, so value = 1000ns * I2C_PERIPH_CLK MHz / 1000 + 1. s->TRISE = (1000 * i2c_MHz / 1000) + 1; // DIAG(F("I2C_init() peripheral clock is now: %d, full reg is %x"), (s->CR2 & 0xFF), s->CR2); // DIAG(F("I2C_init() peripheral CCR is now: %d"), s->CCR); // DIAG(F("I2C_init() peripheral TRISE is now: %d"), s->TRISE); // Enable the I2C master mode s->CR1 |= I2C_CR1_PE; // Enable I2C } /*************************************************************************** * Initiate a start bit for transmission. ***************************************************************************/ void I2CManagerClass::I2C_sendStart() { // Set counters here in case this is a retry. rxCount = txCount = 0; // On a single-master I2C bus, the start bit won't be sent until the bus // state goes to IDLE so we can request it without waiting. On a // multi-master bus, the bus may be BUSY under control of another master, // in which case we can avoid some arbitration failures by waiting until // the bus state is IDLE. We don't do that here. //while (s->SR2 & I2C_SR2_BUSY) {} // Check there's no STOP still in progress. If we OR the START bit into CR1 // and the STOP bit is already set, we could output multiple STOP conditions. while (s->CR1 & I2C_CR1_STOP) {} // Wait for STOP bit to reset s->CR2 |= (I2C_CR2_ITEVTEN | I2C_CR2_ITERREN); // Enable interrupts s->CR2 &= ~I2C_CR2_ITBUFEN; // Don't enable buffer interupts yet. s->CR1 &= ~I2C_CR1_POS; // Clear the POS bit s->CR1 |= (I2C_CR1_ACK | I2C_CR1_START); // Enable the ACK and generate START transactionState = TS_START; } /*************************************************************************** * Initiate a stop bit for transmission (does not interrupt) ***************************************************************************/ void I2CManagerClass::I2C_sendStop() { s->CR1 |= I2C_CR1_STOP; // Stop I2C } /*************************************************************************** * Close I2C down ***************************************************************************/ void I2CManagerClass::I2C_close() { I2C_sendStop(); // Disable the I2C master mode and wait for sync s->CR1 &= ~I2C_CR1_PE; // Disable I2C peripheral // Should never happen, but wait for up to 500us only. unsigned long startTime = micros(); while ((s->CR1 & I2C_CR1_PE) != 0) { if ((int32_t)(micros() - startTime) >= 500) break; } NVIC_DisableIRQ(I2C1_EV_IRQn); NVIC_DisableIRQ(I2C1_ER_IRQn); } /*************************************************************************** * Main state machine for I2C, called from interrupt handler or, * if I2C_USE_INTERRUPTS isn't defined, from the I2CManagerClass::loop() function * (and therefore, indirectly, from I2CRB::wait() and I2CRB::isBusy()). ***************************************************************************/ void I2CManagerClass::I2C_handleInterrupt() { volatile uint16_t temp_sr1, temp_sr2; temp_sr1 = s->SR1; // Check for errors first if (temp_sr1 & (I2C_SR1_AF | I2C_SR1_ARLO | I2C_SR1_BERR)) { // Check which error flag is set if (temp_sr1 & I2C_SR1_AF) { s->SR1 &= ~(I2C_SR1_AF); // Clear AF I2C_sendStop(); // Clear the bus transactionState = TS_IDLE; completionStatus = I2C_STATUS_NEGATIVE_ACKNOWLEDGE; state = I2C_STATE_COMPLETED; } else if (temp_sr1 & I2C_SR1_ARLO) { // Arbitration lost, restart s->SR1 &= ~(I2C_SR1_ARLO); // Clear ARLO I2C_sendStart(); // Reinitiate request transactionState = TS_START; } else if (temp_sr1 & I2C_SR1_BERR) { // Bus error s->SR1 &= ~(I2C_SR1_BERR); // Clear BERR I2C_sendStop(); // Clear the bus transactionState = TS_IDLE; completionStatus = I2C_STATUS_BUS_ERROR; state = I2C_STATE_COMPLETED; } } else { // No error flags, so process event according to current state. switch (transactionState) { case TS_START: if (temp_sr1 & I2C_SR1_SB) { // Event EV5 // Start bit has been sent successfully and we have the bus. // If anything to send, initiate write. Otherwise initiate read. if (operation == OPERATION_READ || ((operation == OPERATION_REQUEST) && !bytesToSend)) { // Send address with read flag (1) or'd in s->DR = (deviceAddress << 1) | 1; // send the address transactionState = TS_R_ADDR; } else { // Send address with write flag (0) or'd in s->DR = (deviceAddress << 1) | 0; // send the address transactionState = TS_W_ADDR; } } // SB bit is cleared by writing to DR (already done). break; case TS_W_ADDR: if (temp_sr1 & I2C_SR1_ADDR) { temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit // Event EV6 // Address sent successfully, device has ack'd in response. if (!bytesToSend) { I2C_sendStop(); transactionState = TS_IDLE; completionStatus = I2C_STATUS_OK; state = I2C_STATE_COMPLETED; } else { // Put one byte into DR to load shift register. s->DR = sendBuffer[txCount++]; bytesToSend--; if (bytesToSend) { // Put another byte to load DR s->DR = sendBuffer[txCount++]; bytesToSend--; } if (!bytesToSend) { // No more bytes to send. // The TXE interrupt occurs when the DR is empty, and the BTF interrupt // occurs when the shift register is also empty (one character later). // To avoid repeated TXE interrupts during this time, we disable TXE interrupt. s->CR2 &= ~I2C_CR2_ITBUFEN; // Wait for BTF interrupt, disable TXE interrupt transactionState = TS_W_STOP; } else { // More data remaining to send after this interrupt, enable TXE interrupt. s->CR2 |= I2C_CR2_ITBUFEN; transactionState = TS_W_DATA; } } } break; case TS_W_DATA: if (temp_sr1 & I2C_SR1_TXE) { // Event EV8_1/EV8 // Transmitter empty, write a byte to it. if (bytesToSend) { s->DR = sendBuffer[txCount++]; bytesToSend--; if (!bytesToSend) { s->CR2 &= ~I2C_CR2_ITBUFEN; // Disable TXE interrupt transactionState = TS_W_STOP; } } } break; case TS_W_STOP: if (temp_sr1 & I2C_SR1_BTF) { // Event EV8_2 // Done, last character sent. Anything to receive? if (bytesToReceive) { I2C_sendStart(); // NOTE: Three redundant BTF interrupts take place between the // first BTF interrupt and the START interrupt. I've tried all sorts // of ways to eliminate them, and the only thing that worked for // me was to loop until the BTF bit becomes reset. Either way, // it's a waste of processor time. Anyone got a solution? //while (s->SR1 && I2C_SR1_BTF) {} transactionState = TS_START; } else { I2C_sendStop(); transactionState = TS_IDLE; completionStatus = I2C_STATUS_OK; state = I2C_STATE_COMPLETED; } s->SR1 &= I2C_SR1_BTF; // Clear BTF interrupt } break; case TS_R_ADDR: if (temp_sr1 & I2C_SR1_ADDR) { // Event EV6 // Address sent for receive. // The next bit is different depending on whether there are // 1 byte, 2 bytes or >2 bytes to be received, in accordance with the // Programmers Reference RM0390. if (bytesToReceive == 1) { // Receive 1 byte s->CR1 &= ~I2C_CR1_ACK; // Disable ack temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit // Next step will occur after a RXNE interrupt, so enable it s->CR2 |= I2C_CR2_ITBUFEN; transactionState = TS_R_STOP; } else if (bytesToReceive == 2) { // Receive 2 bytes s->CR1 &= ~I2C_CR1_ACK; // Disable ACK for final byte s->CR1 |= I2C_CR1_POS; // set POS flag to delay effect of ACK flag // Next step will occur after a BTF interrupt, so disable RXNE interrupt s->CR2 &= ~I2C_CR2_ITBUFEN; temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit transactionState = TS_R_STOP; } else { // >2 bytes, just wait for bytes to come in and ack them for the time being // (ack flag has already been set). // Next step will occur after a BTF interrupt, so disable RXNE interrupt s->CR2 &= ~I2C_CR2_ITBUFEN; temp_sr2 = s->SR2; // read SR2 to complete clearing the ADDR bit transactionState = TS_R_DATA; } } break; case TS_R_DATA: // Event EV7/EV7_1 if (temp_sr1 & I2C_SR1_BTF) { // Byte received in receiver - read next byte if (bytesToReceive == 3) { // Getting close to the last byte, so a specific sequence is recommended. s->CR1 &= ~I2C_CR1_ACK; // Reset ack for next byte received. transactionState = TS_R_STOP; } receiveBuffer[rxCount++] = s->DR; // Store received byte bytesToReceive--; } break; case TS_R_STOP: if (temp_sr1 & I2C_SR1_BTF) { // Event EV7 (last one) // When we've got here, the receiver has got the last two bytes // (or one byte, if only one byte is being received), // and NAK has already been sent, so we need to read from the receiver. if (bytesToReceive) { if (bytesToReceive > 1) I2C_sendStop(); while(bytesToReceive) { receiveBuffer[rxCount++] = s->DR; // Store received byte(s) bytesToReceive--; } // Finish. transactionState = TS_IDLE; completionStatus = I2C_STATUS_OK; state = I2C_STATE_COMPLETED; } } else if (temp_sr1 & I2C_SR1_RXNE) { if (bytesToReceive == 1) { // One byte on a single-byte transfer. Ack has already been set. I2C_sendStop(); receiveBuffer[rxCount++] = s->DR; // Store received byte bytesToReceive--; // Finish. transactionState = TS_IDLE; completionStatus = I2C_STATUS_OK; state = I2C_STATE_COMPLETED; } else s->SR1 &= I2C_SR1_RXNE; // Acknowledge interrupt } break; } // If we've received an interrupt at any other time, we're not interested so clear it // to prevent it recurring ad infinitum. s->SR1 = 0; } } #endif /* I2CMANAGER_STM32_H */