/* * © 2024, Travis Farmer. All rights reserved. * © 2021 Chris Harlow * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "IO_RSproto.h" #include "defines.h" static const byte PAYLOAD_FALSE = 0; static const byte PAYLOAD_NORMAL = 1; static const byte PAYLOAD_STRING = 2; taskBuffer * taskBuffer::first=NULL; taskBuffer::taskBuffer(Stream * myserial) { serial = myserial; next=first; first=this; bufferLength=0; inCommandPayload=PAYLOAD_FALSE; } taskBuffer::~taskBuffer() { // destructor } void taskBuffer::doCommand(uint8_t *commandBuffer, int commandSize) { for (taskBuffer * t=first;t;t=t->next) t->doCommand2(commandBuffer,commandSize); } void taskBuffer::doCommand2(uint8_t *commandBuffer, int commandSize) { // process commands here to be sent //_serial->begin(115200); //ArduinoPins::fastWriteDigital(bus->_txPin, HIGH); if (_txPin != -1) digitalWrite(_txPin,HIGH); serial->write(commandBuffer, 7); //serial->flush(); if (_txPin != -1) digitalWrite(_txPin,LOW); } void taskBuffer::init(HardwareSerial &hwSerial, unsigned long baud, int8_t txPin) { hwSerial.begin(baud, SERIAL_8N1); new taskBuffer(&hwSerial); for (taskBuffer * t=first;t;t=t->next) t->_txPin = txPin; if (txPin != -1) pinMode(txPin, OUTPUT); if (txPin != -1) digitalWrite(txPin, LOW); } void taskBuffer::loop() { for (taskBuffer * t=first;t;t=t->next) t->loop2(); } void taskBuffer::loop2() { // process received commands here while (serial->available()) { char ch = serial->read(); if (!inCommandPayload) { if (ch == STARTBYTE) { inCommandPayload = PAYLOAD_NORMAL; bufferLength = 0; buffer[0] = '\0'; } } else { // if (inCommandPayload) if (bufferLength < (COMMAND_BUFFER_SIZE-1)) buffer[bufferLength++] = ch; if (inCommandPayload > PAYLOAD_NORMAL) { if (inCommandPayload > 32 + 2) { // String way too long ch = ENDBYTE; // we end this nonsense inCommandPayload = PAYLOAD_NORMAL; DIAG(F("Parse error: Unbalanced string")); // fall through to ending parsing below } else if (ch == '"') { // String end inCommandPayload = PAYLOAD_NORMAL; continue; // do not fall through } else inCommandPayload++; } if (inCommandPayload == PAYLOAD_NORMAL) { if (ch == ENDBYTE) { buffer[bufferLength] = '\0'; parseRx(buffer); inCommandPayload = PAYLOAD_FALSE; break; } else if (ch == '"') { inCommandPayload = PAYLOAD_STRING; } } } } } void taskBuffer::parseRx(uint8_t *buf) { // pass on what we got bool found = (buf[0] != STARTBYTE); for (byte *b=buf; b[0] != '\0'; b++) { if (found) { parseOne(b); found=false; } if (b[0] == STARTBYTE) found = true; } } void taskBuffer::parseOne(uint8_t *buf) { // finaly, process the darn data while (buf[0] == '<' || buf[0] == ' ') buf++; // strip off any number of < or spaces uint8_t toNode = buf[0]; if (toNode != 0) return; // not for master uint8_t fromNode = buf[1]; if (fromNode == 0) return; // why did out own data come round the ring back to us? uint8_t opcode = buf[2]; RSproto *bus = RSproto::findBus(0); RSprotonode *node = bus->findNode(fromNode); switch (opcode) { case EXIOPINS: {node->_numDigitalPins = buf[3]; node->_numAnaloguePins = buf[4]; // See if we already have suitable buffers assigned if (node->_numDigitalPins>0) { size_t digitalBytesNeeded = (node->_numDigitalPins + 7) / 8; if (node->_digitalPinBytes < digitalBytesNeeded) { // Not enough space, free any existing buffer and allocate a new one if (node->_digitalPinBytes > 0) free(node->_digitalInputStates); if ((node->_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) { node->_digitalPinBytes = digitalBytesNeeded; } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc %d bytes"), fromNode, digitalBytesNeeded); //_deviceState = DEVSTATE_FAILED; node->_digitalPinBytes = 0; return; } } } if (node->_numAnaloguePins>0) { size_t analogueBytesNeeded = node->_numAnaloguePins * 2; if (node->_analoguePinBytes < analogueBytesNeeded) { // Free any existing buffers and allocate new ones. if (node->_analoguePinBytes > 0) { free(node->_analogueInputBuffer); free(node->_analogueInputStates); free(node->_analoguePinMap); } node->_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1); node->_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1); node->_analoguePinMap = (uint8_t*) calloc(node->_numAnaloguePins, 1); if (node->_analogueInputStates != NULL && node->_analogueInputBuffer != NULL && node->_analoguePinMap != NULL) { node->_analoguePinBytes = analogueBytesNeeded; } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc analog pin bytes"), fromNode); //_deviceState = DEVSTATE_FAILED; node->_analoguePinBytes = 0; return; } } } node->resFlag = 1; break;} case EXIOINITA: { for (int i = 3; i < node->_numAnaloguePins; i++) { node->_analoguePinMap[i] = buf[i]; } node->resFlag = 1; break; } case EXIOVER: { node->_majorVer = buf[3]; node->_minorVer = buf[4]; node->_patchVer = buf[5]; node->resFlag = 1; break; } case EXIORDY: { node->resFlag = 1; break; } case EXIOERR: { node->resFlag = -1; break; } case EXIORDD: { for (int i = 3; i < (node->_numDigitalPins+7)/8; i++) { node->_digitalInputStates[i-3] = buf[i]; } node->resFlag = 1; break; } case EXIORDAN: { for (int i = 3; i < node->_numAnaloguePins*2; i++) { node->_analogueInputBuffer[i-3] = buf[i]; } node->resFlag = 1; break; } } } /************************************************************ * RSproto implementation ************************************************************/ // Constructor for RSproto RSproto::RSproto(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin) { _serial = &serial; _baud = baud; _txPin = txPin; _busNo = busNo; task->init(serial, baud, txPin); if (_waitA < 3) _waitA = 3; // Add device to HAL device chain IODevice::addDevice(this); // Add bus to RSproto chain. _nextBus = _busList; _busList = this; } /* -= _loop =- // // Main loop function for RSproto. // Work through list of nodes. For each node, in separate loop entries // When the slot time has finished, move on to the next device. */ void RSproto::_loop(unsigned long currentMicros) { _currentMicros = currentMicros; //if (_currentNode == NULL) { // _currentNode = _nodeListStart; //} //if (_currentMicros - _cycleStartTime < _cycleTime) return; //_cycleStartTime = _currentMicros; //if (_currentNode == NULL) return; task->loop(); } // Link to chain of RSproto instances, left over from RSproto template. RSproto *RSproto::_busList = NULL; /************************************************************ * RSprotonode implementation ************************************************************/ /* -= RSprotonode =- // // Constructor for RSprotonode object */ RSprotonode::RSprotonode(VPIN firstVpin, int nPins, uint8_t nodeID) { _firstVpin = firstVpin; _nPins = nPins; _busNo = 0; _nodeID = nodeID; //bus = bus->findBus(0); //_serial = bus->_serialD; if (_nodeID > 252) _nodeID = 252; // cannot have a node with the frame flags if (_nodeID < 1) _nodeID = 1; // cannot have a node with the master ID // Add this device to HAL device list IODevice::addDevice(this); _display(); // Add RSprotonode to RSproto object. RSproto *bus = RSproto::findBus(_busNo); if (bus != NULL) { bus->addNode(this); return; } } bool RSprotonode::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) { if (paramCount != 1) return false; int pin = vpin - _firstVpin; uint8_t pullup = (uint8_t)params[0]; uint8_t outBuffer[] = {0xFD, _nodeID, 0, EXIODPUP, (uint8_t)pin, pullup, 0xFE}; unsigned long startMillis = millis(); task->doCommand(outBuffer,7); while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin); return false; } resFlag = 0; return true; } int RSprotonode::_configureAnalogIn(VPIN vpin) { int pin = vpin - _firstVpin; //RSproto *mainrs = RSproto::findBus(_busNo); uint8_t commandBuffer[] = {0xFD, _nodeID, 0, EXIOENAN, (uint8_t) pin, 0xFE}; unsigned long startMillis = millis(); task->doCommand(commandBuffer, 6); while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin); return false; } resFlag = 0; return true; } void RSprotonode::_begin() { uint8_t commandBuffer[] = {0xFD, _nodeID, 0, EXIOINIT, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8), 0xFE}; unsigned long startMillis = millis(); task->doCommand(commandBuffer,8); while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINIT"), _nodeID); } resFlag = 0; commandBuffer[0] = 0xFD; commandBuffer[1] = _nodeID; commandBuffer[2] = 0; commandBuffer[3] = EXIOINITA; commandBuffer[4] = 0xFE; startMillis = millis(); task->doCommand(commandBuffer,5); while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINITA"), _nodeID); } resFlag = 0; commandBuffer[0] = 0xFD; commandBuffer[1] = _nodeID; commandBuffer[2] = 0; commandBuffer[3] = EXIOVER; commandBuffer[4] = 0xFE; startMillis = millis(); task->doCommand(commandBuffer,3); while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID); } else DIAG(F("EX-IOExpander device found, Node:%d, Version v%d.%d.%d"), _nodeID, _majorVer, _minorVer, _patchVer); resFlag = 0; #ifdef DIAG_IO _display(); #endif } int RSprotonode::_read(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8); return value; } void RSprotonode::_write(VPIN vpin, int value) { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; uint8_t digitalOutBuffer[7]; digitalOutBuffer[0] = 0xFD; digitalOutBuffer[1] = _nodeID; digitalOutBuffer[2] = 0; digitalOutBuffer[3] = EXIOWRD; digitalOutBuffer[4] = (uint8_t) pin; digitalOutBuffer[5] = (uint8_t) value; digitalOutBuffer[6] = 0xFE; unsigned long startMillis = millis(); task->doCommand(digitalOutBuffer,7); while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID); } resFlag = 0; } int RSprotonode::_readAnalogue(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { uint8_t _pinLSBByte = aPin * 2; uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } } return -1; // pin not found in table } void RSprotonode::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) { uint8_t servoBuffer[11]; int pin = vpin - _firstVpin; servoBuffer[0] = 0xFD; servoBuffer[1] = _nodeID; servoBuffer[2] = 0; servoBuffer[3] = EXIOWRAN; servoBuffer[4] = (uint8_t) pin; servoBuffer[5] = (uint8_t) value & 0xFF; servoBuffer[6] = (uint8_t) value >> 8; servoBuffer[7] = (uint8_t) profile; servoBuffer[8] = (uint8_t) duration & 0xFF; servoBuffer[9] = (uint8_t) duration >> 8; servoBuffer[10] = 0xFE; unsigned long startMillis = millis(); task->doCommand(servoBuffer,11); while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID); } resFlag = 0; }