/* * © 2022 Paul M Antoine * © 2021 Mike S * © 2021 Fred Decker * © 2020 Chris Harlow * © 2022 Harald Barth * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #ifndef MotorDriver_h #define MotorDriver_h #include "FSH.h" #include "IODevice.h" #include "DCCTimer.h" #define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH #define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW #define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH) #define isLOW(fastpin) (!isHIGH(fastpin)) #define TOKENPASTE(x, y) x ## y #define TOKENPASTE2(x, y) TOKENPASTE(x, y) #if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) #define HAVE_PORTA(X) X #define HAVE_PORTB(X) X #define HAVE_PORTC(X) X #endif #if defined(ARDUINO_AVR_UNO) #define HAVE_PORTB(X) X #endif #if defined(ARDUINO_ARCH_SAMD) #define PORTA REG_PORT_OUT0 #define HAVE_PORTA(X) X #define PORTB REG_PORT_OUT1 #define HAVE_PORTB(X) X #endif #if defined(ARDUINO_ARCH_STM32) #define PORTA GPIOA->ODR #define HAVE_PORTA(X) X #define PORTB GPIOB->ODR #define HAVE_PORTB(X) X #define PORTC GPIOC->ODR #define HAVE_PORTC(X) X #endif // if macros not defined as pass-through we define // them here as someting that is valid as a // statement and evaluates to false. #ifndef HAVE_PORTA #define HAVE_PORTA(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTB #define HAVE_PORTB(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTC #define HAVE_PORTC(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif // Virtualised Motor shield 1-track hardware Interface #ifndef UNUSED_PIN // sync define with the one in MotorDrivers.h #define UNUSED_PIN 127 // inside int8_t #endif class pinpair { public: pinpair(byte p1, byte p2) { pin = p1; invpin = p2; }; byte pin = UNUSED_PIN; byte invpin = UNUSED_PIN; }; #if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32) typedef uint32_t portreg_t; #else typedef uint8_t portreg_t; #endif struct FASTPIN { volatile portreg_t *inout; portreg_t maskHIGH; portreg_t maskLOW; volatile portreg_t *shadowinout; }; // The port registers that are shadowing // the real port registers. These are // defined in Motordriver.cpp extern volatile portreg_t shadowPORTA; extern volatile portreg_t shadowPORTB; extern volatile portreg_t shadowPORTC; enum class POWERMODE : byte { OFF, ON, OVERLOAD }; class MotorDriver { public: MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin, byte current_pin, float senseFactor, unsigned int tripMilliamps, byte faultPin); void setPower( POWERMODE mode); POWERMODE getPower() { return powerMode;} // as the port registers can be shadowed to get syncronized DCC signals // we need to take care of that and we have to turn off interrupts if // we setSignal() or setBrake() or setPower() during that time as // otherwise the call from interrupt context can undo whatever we do // from outside interrupt void setBrake( bool on, bool interruptContext=false); __attribute__((always_inline)) inline void setSignal( bool high) { if (trackPWM) { DCCTimer::setPWM(signalPin,high); } else { if (high) { setHIGH(fastSignalPin); if (dualSignal) setLOW(fastSignalPin2); } else { setLOW(fastSignalPin); if (dualSignal) setHIGH(fastSignalPin2); } } }; inline void enableSignal(bool on) { if (on) pinMode(signalPin, OUTPUT); else pinMode(signalPin, INPUT); }; inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); }; void setDCSignal(byte speedByte); inline void detachDCSignal() { #if defined(__arm__) pinMode(brakePin, OUTPUT); #elif defined(ARDUINO_ARCH_ESP32) ledcDetachPin(brakePin); #else setDCSignal(128); #endif DCinuse = false; }; int getCurrentRaw(bool fromISR=false); unsigned int raw2mA( int raw); unsigned int mA2raw( unsigned int mA); inline bool brakeCanPWM() { #if defined(ARDUINO_ARCH_ESP32) || defined(__arm__) // TODO: on ARM we can use digitalPinHasPWM, and may wish/need to return true; #else #ifdef digitalPinToTimer return ((brakePin!=UNUSED_PIN) && (digitalPinToTimer(brakePin))); #else return (brakePin<14 && brakePin >1); #endif //digitalPinToTimer #endif //ESP32/ARM } inline int getRawCurrentTripValue() { return rawCurrentTripValue; } bool isPWMCapable(); bool canMeasureCurrent(); bool trackPWM = false; // this track uses PWM timer to generate the DCC waveform static bool commonFaultPin; // This is a stupid motor shield which has only a common fault pin for both outputs inline byte getFaultPin() { return faultPin; } inline void makeProgTrack(bool on) { // let this output know it's a prog track. isProgTrack = on; } void checkPowerOverload(bool useProgLimit, byte trackno); #ifdef ANALOG_READ_INTERRUPT bool sampleCurrentFromHW(); void startCurrentFromHW(); #endif private: bool isProgTrack = false; // tells us if this is a prog track void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result); void getFastPin(const FSH* type,int pin, FASTPIN & result) { getFastPin(type, pin, 0, result); } VPIN powerPin; byte signalPin, signalPin2, currentPin, faultPin, brakePin; FASTPIN fastSignalPin, fastSignalPin2, fastBrakePin,fastFaultPin; bool dualSignal; // true to use signalPin2 bool invertBrake; // brake pin passed as negative means pin is inverted bool invertPower; // power pin passed as negative means pin is inverted // Raw to milliamp conversion factors avoiding float data types. // Milliamps=rawADCreading * sensefactorInternal / senseScale // // senseScale is chosen as 256 to give enough scale for 2 decimal place // raw->mA conversion with an ultra fast optimised integer multiplication int senseFactorInternal; // set to senseFactor * senseScale static const int senseScale=256; int senseOffset; unsigned int tripMilliamps; int rawCurrentTripValue; // current sampling POWERMODE powerMode; unsigned long lastSampleTaken; unsigned int sampleDelay; int progTripValue; int lastCurrent; #ifdef ANALOG_READ_INTERRUPT volatile unsigned long sampleCurrentTimestamp; volatile uint16_t sampleCurrent; #endif int maxmA; int tripmA; // Wait times for power management. Unit: milliseconds static const int POWER_SAMPLE_ON_WAIT = 100; static const int POWER_SAMPLE_OFF_WAIT = 1000; static const int POWER_SAMPLE_OVERLOAD_WAIT = 20; // Trip current for programming track, 250mA. Change only if you really // need to be non-NMRA-compliant because of decoders that are not either. static const int TRIP_CURRENT_PROG=250; unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT; unsigned int power_good_counter = 0; bool DCinuse = false; byte curSpeedCode = 0; }; #endif