/*
* © 2024, Travis Farmer. All rights reserved.
* © 2024, Chris Bulliner. All rights reserved. https://github.com/CMB27
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see .
*/
/*
* Modbus
* =======
* To define a Modbus, example syntax:
* Modbus::create(bus, serial, baud[, cycletime[, pin]]);
*
* bus = 0-255
* serial = serial port to be used (e.g. Serial3)
* baud = baud rate (9600, 19200, 28800, 57600 or 115200)
* cycletime = minimum time between successive updates/reads of a node in millisecs (default 500ms)
* pin = pin number connected to RS485 module's DE and !RE terminals for half-duplex operation (default VPIN_NONE)
*
* Each bus must use a different serial port.
*
* ModbusNode
* ========
* To define a CMRI node and associate it with a CMRI bus,
* CMRInode::create(firstVPIN, numVPINs, bus, nodeID, type [, inputs, outputs]);
*
* firstVPIN = first vpin in block allocated to this device
* numVPINs = number of vpins (e.g. 72 for an SMINI node)
* bus = 0-255
* nodeID = 0-127
* numDiscreteInputs = number of discrete inputs
* numCoils = number of coils
*
* Reference: "LCS-9.10.1
* Layout Control Specification: CMRInet Protocol
* Version 1.1 December 2014."
*/
#ifndef IO_MODBUS_H
#define IO_MODBUS_H
#include "IODevice.h"
#include
uint16_t div8RndUp(uint16_t value);
/**********************************************************************
* Modbusnode class
*
* This encapsulates the state associated with a single Modbus node,
* which includes the nodeID, number of discrete inputs and coils, and
* the states of the discrete inputs and coils.
**********************************************************************/
class Modbusnode : public IODevice {
private:
uint8_t _busNo;
uint8_t _nodeID;
char _type;
Modbusnode *_next = NULL;
bool _initialised = false;
static const uint8_t _numCoils=100;
static const uint8_t _numDiscreteInputs=100;
static const uint8_t _numHoldingRegisters=100;
static const uint8_t _numInputRegisters=100;
uint8_t _numBO=0;
uint8_t _numBI=0;
uint8_t _numAO=0;
uint8_t _numAI=0;
int dataBO[16];
int dataBI[16];
int dataAO[84];
int dataAI[84];
int capePinsBI[16];
int capePinsBO[16];
int capePinsPU[16];
int capePinsAO[16];
int capePinsAI[16];
int configBPinsO[16];
int configBPinsI[16];
int configBPinsPU[16];
int configAPinsO[16];
int configAPinsI[16];
// EX-IOExpander protocol flags
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration
EXIOVER = 0xE3, // Flag to get version
EXIORDAN = 0xE4, // Flag to read an analogue input
EXIOWRD = 0xE5, // Flag for digital write
EXIORDD = 0xE6, // Flag to read digital input
EXIOENAN = 0xE7, // Flag to enable an analogue pin
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
EXIOERR = 0xEF, // Flag we've received an error
};
void resetInit() {
for (int i = 0; i < 16; i++) {
capePinsBI[i] = 0;
capePinsBO[i] = 0;
capePinsPU[i] = 0;
capePinsAO[i] = 0;
capePinsAI[i] = 0;
configBPinsO[i] = 0;
configBPinsI[i] = 0;
configBPinsPU[i] = 0;
configAPinsO[i] = 0;
configAPinsI[i] = 0;
}
}
void spitError(int pin) {
bool isBI = false;
bool isBO = false;
bool isPU = false;
bool isAI = false;
bool isAO = false;
int configPinNum = pin / 16;
int configPinBit = pin % 16;
if (bitRead(configBPinsI[configPinNum],configPinBit) == true) isBI = true;
if (bitRead(configBPinsO[configPinNum],configPinBit) == true) isBO = true;
if (bitRead(configBPinsPU[configPinNum],configPinBit) == true) isPU = true;
if (bitRead(configAPinsI[configPinNum],configPinBit) == true) isAI = true;
if (bitRead(configAPinsO[configPinNum],configPinBit) == true) isAO = true;
if (isBI && isPU) DIAG(F("IO_Modbus config eror: Bool Input with pull-up, pin: %d"),pin);
if (isBI && !isPU) DIAG(F("IO_Modbus config eror: Bool Input without pull-up, pin: %d"),pin);
if (isBO) DIAG(F("IO_Modbus config eror: Bool Output, pin: %d"),pin);
if (isAI) DIAG(F("IO_Modbus config eror: Analog Input, pin: %d"),pin);
if (isAO) DIAG(F("IO_Modbus config eror: Analog Output, pin: %d"),pin);
}
public:
enum ProfileType : int {
Instant = 0, // Moves immediately between positions (if duration not specified)
UseDuration = 0, // Use specified duration
Fast = 1, // Takes around 500ms end-to-end
Medium = 2, // 1 second end-to-end
Slow = 3, // 2 seconds end-to-end
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
};
uint8_t _numDigitalPins = 0;
uint8_t _numAnaloguePins = 0;
uint8_t _majorVer = 0;
uint8_t _minorVer = 0;
uint8_t _patchVer = 0;
uint8_t* _digitalInputStates = NULL;
uint8_t* _analogueInputStates = NULL;
uint8_t* _analogueInputBuffer = NULL; // buffer for I2C input transfers
uint8_t _readCommandBuffer[1];
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
uint8_t* _analoguePinMap = NULL;
I2CRB _i2crb;
static void create(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t nodeID) {
if (checkNoOverlap(firstVpin, nPins)) new Modbusnode(firstVpin, nPins, busNo, nodeID);
}
Modbusnode(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t nodeID);
int *coils[_numCoils];
int *discreteInputs[_numDiscreteInputs];
uint16_t *holdingRegisters[_numHoldingRegisters];
uint16_t *inputRegisters[_numInputRegisters];
uint8_t getNodeID() {
return _nodeID;
}
uint8_t getNumCoils() {
return _numCoils;
}
uint8_t getNumDiscreteInputs() {
return _numDiscreteInputs;
}
uint8_t getNumHoldingRegisters() {
return _numHoldingRegisters;
}
uint8_t getNumInputRegisters() {
return _numInputRegisters;
}
Modbusnode *getNext() {
return _next;
}
void setNext(Modbusnode *node) {
_next = node;
}
bool isInitialised() {
return _initialised;
}
void setInitialised() {
_initialised = true;
}
bool addPinBI(VPIN vpin, bool inputPullup) {
int configPinNum = vpin / 16;
int configPinBit = vpin % 16;
bitSet(configBPinsI[configPinNum],configPinBit); // input
bitWrite(configBPinsPU[configPinNum],configPinBit,inputPullup);
if (_numBI + _numBO + _numAI + _numAO > _nPins) {
DIAG(F("IO_Modbus config error: Too many I/O pins vs VPINs: %d"),_numBI + _numBO + _numAI + _numAO);
return true;
}
_numBI++;
return false;
}
bool addPinBO(VPIN vpin) {
int configPinNum = vpin / 16;
int configPinBit = vpin % 16;
bitSet(configBPinsO[configPinNum],configPinBit); // input
if (_numBI + _numBO + _numAI + _numAO > _nPins) {
DIAG(F("IO_Modbus config error: Too many I/O pins vs VPINs: %d"),_numBI + _numBO + _numAI + _numAO);
return true;
}
_numBO++;
return false;
}
bool addPinAI(VPIN vpin) {
int configPinNum = vpin / 6;
int configPinBit = vpin % 16;
bitSet(configAPinsI[configPinNum],configPinBit); // input
if (_numBI + _numBO + _numAI + _numAO > _nPins) {
DIAG(F("IO_Modbus config error: Too many I/O pins vs VPINs: %d"),_numBI + _numBO + _numAI + _numAO);
return true;
}
_numAI++;
return false;
}
bool addPinAO(VPIN vpin) {
int configPinNum = vpin / 6;
int configPinBit = vpin % 16;
bitSet(configAPinsO[configPinNum],configPinBit); // input
if (_numBI + _numBO + _numAI + _numAO > _nPins) {
DIAG(F("IO_Modbus config error: Too many I/O pins vs VPINs: %d"),_numBI + _numBO + _numAI + _numAO);
return true;
}
_numBI++;
return false;
}
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
if (paramCount != 1) return false;
int pin = vpin - _firstVpin;
if (configType == CONFIGURE_INPUT) {
Modbus* mb = Modbus::findBus(0);
mb->_CommMode = 2;
mb->_pullup = params[0];
mb->_pin = pin;
mb->_opperation = 1;
} else if (configType == CONFIGURE_ANALOGINPUT) {
// TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn
// from IODevice class definition. Not urgent, but each virtual function defined
// means increasing the RAM requirement of every HAL device driver, whether it's relevant
// to the driver or not.
return false;
}
return false;
}
int _configureAnalogIn(VPIN vpin) override {
int pin = vpin - _firstVpin;
Modbus* mb = Modbus::findBus(0);
mb->_CommMode = 2;
mb->_pin = pin;
mb ->_opperation = 2;
return false;
}
void _begin() override {
Modbus* mb = Modbus::findBus(0);
if (mb->_txPin != VPIN_NONE) {
pinMode(mb->_txPin, OUTPUT);
ArduinoPins::fastWriteDigital(mb->_txPin, LOW);
}
uint8_t receiveBuffer[5];
uint8_t commandBuffer[7] = {EXIOINIT, _nodeID, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8)};
mb->updateCrc(commandBuffer,sizeof(commandBuffer));
if (mb->_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(mb->_txPin, HIGH);
mb->_serialD->write(commandBuffer, sizeof(commandBuffer));
mb->_serialD->flush();
if (mb->_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(mb->_txPin, LOW);
unsigned long startMillis = millis();
while (!mb->_serialD->available()) {
if (millis() - startMillis >= 500) return;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (mb->_serialD->available()) {
startMicros = micros();
receiveBuffer[len] = mb->_serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (receiveBuffer[0] == EXIOPINS && mb->crcGood(receiveBuffer,sizeof(receiveBuffer)-2)) {
_numDigitalPins = receiveBuffer[1];
_numAnaloguePins = receiveBuffer[2];
// See if we already have suitable buffers assigned
if (_numDigitalPins>0) {
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
if (_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (_digitalPinBytes > 0) free(_digitalInputStates);
if ((_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpanderMB node:%d ERROR alloc %d bytes"), _nodeID, digitalBytesNeeded);
_deviceState = DEVSTATE_FAILED;
_digitalPinBytes = 0;
return;
}
}
}
if (_numAnaloguePins>0) {
size_t analogueBytesNeeded = _numAnaloguePins * 2;
if (_analoguePinBytes < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (_analoguePinBytes > 0) {
free(_analogueInputBuffer);
free(_analogueInputStates);
free(_analoguePinMap);
}
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
if (_analogueInputStates != NULL &&
_analogueInputBuffer != NULL &&
_analoguePinMap != NULL) {
_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpanderMB node:%d ERROR alloc analog pin bytes"), _nodeID);
_deviceState = DEVSTATE_FAILED;
_analoguePinBytes = 0;
return;
}
}
}
} else {
DIAG(F("EX-IOExpanderMB node:%d ERROR configuring device (CRC: %s)"), _nodeID, mb->crcGood(receiveBuffer,sizeof(receiveBuffer)-2)? "PASS":"FAIL");
_deviceState = DEVSTATE_FAILED;
return;
}
commandBuffer[0] = EXIOINITA;
mb->updateCrc(commandBuffer,sizeof(commandBuffer));
if (mb->_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(mb->_txPin, HIGH);
mb->_serialD->write(commandBuffer, sizeof(commandBuffer));
mb->_serialD->flush();
if (mb->_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(mb->_txPin, LOW);
startMillis = millis();
while (!mb->_serialD->available()) {
if (millis() - startMillis >= 500) return;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (mb->_serialD->available()) {
startMicros = micros();
receiveBuffer[len] = mb->_serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (mb->crcGood(receiveBuffer,sizeof(receiveBuffer)-2)) {
for (int i = 0; i < _numAnaloguePins; i++) {
_analoguePinMap[i] = receiveBuffer[i];
}
}
uint8_t versionBuffer[5];
commandBuffer[0] = EXIOVER;
mb->updateCrc(commandBuffer,sizeof(commandBuffer));
if (mb->_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(mb->_txPin, HIGH);
mb->_serialD->write(commandBuffer, sizeof(commandBuffer));
mb->_serialD->flush();
if (mb->_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(mb->_txPin, LOW);
startMillis = millis();
while (!mb->_serialD->available()) {
if (millis() - startMillis >= 500) return;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (mb->_serialD->available()) {
startMicros = micros();
versionBuffer[len] = mb->_serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (mb->crcGood(versionBuffer,sizeof(versionBuffer)-2)) {
_majorVer = versionBuffer[0];
_minorVer = versionBuffer[1];
_patchVer = versionBuffer[2];
DIAG(F("EX-IOExpander device found, node:%d, Version v%d.%d.%d"), _nodeID, _majorVer, _minorVer, _patchVer);
}
#ifdef DIAG_IO
_display();
#endif
_initialised = false;
}
int _read(VPIN vpin) override {
// Return current state from this device
uint16_t pin = vpin - _firstVpin;
int PinNum = pin / 16;
int PinBit = pin % 16;
if (bitRead(configAPinsI[PinNum],PinBit) == true) return bitRead(dataBI[PinNum],PinBit)? 1:0;
else return 0;
}
void _write(VPIN vpin, int value) override {
// Update current state for this device, in preparation the bus transmission
uint16_t pin = vpin - _firstVpin;
int PinNum = pin / 16;
int PinBit = pin % 16;
if (bitRead(configAPinsO[PinNum], PinBit) == true) {
if (value == 1) bitSet(dataBO[PinNum], PinBit);
else bitClear(dataBO[PinNum], PinBit);
}
}
int _readAnalogue(VPIN vpin) {
// Return acquired data value, e.g.
uint16_t pin = vpin - _firstVpin;
int PinNum = pin / 16;
int PinBit = pin % 16;
if (bitRead(configAPinsI[PinNum],PinBit) == true) return dataAI[pin];
else return 0;
}
void _writeAnalogue(VPIN vpin, int value) {
uint16_t pin = vpin - _firstVpin;
int PinNum = pin / 16;
int PinBit = pin % 16;
if (bitRead(configAPinsI[PinNum],PinBit) == true) dataAO[pin] = value;
}
uint8_t getBusNumber() {
return _busNo;
}
uint8_t getNumBinaryInputsVPINsMin() {
if (_numDiscreteInputs > 0) return _firstVpin;
else return 0;
}
uint8_t getNumBinaryInputsVPINsMax() {
if (_numDiscreteInputs > 0) return _firstVpin+_numDiscreteInputs-1;
else return 0;
}
uint8_t getNumBinaryOutputsVPINsMin() {
if (_numCoils > 0) return _firstVpin+_numDiscreteInputs;
else return 0;
}
uint8_t getNumBinaryOutputsVPINsMax() {
if (_numCoils > 0) return _firstVpin+_numDiscreteInputs+_numCoils-1;
else return 0;
}
uint8_t getNumAnalogInputsVPINsMin() {
if (_numInputRegisters > 0) return _firstVpin+_numDiscreteInputs+_numCoils;
else return 0;
}
uint8_t getNumAnalogInputsVPINsMax() {
if (_numInputRegisters > 0) return _firstVpin+_numDiscreteInputs+_numCoils+_numInputRegisters-1;
else return 0;
}
uint8_t getNumAnalogOutputsVPINsMin() {
if (_numHoldingRegisters > 0) return _firstVpin+_numDiscreteInputs+_numCoils+_numInputRegisters;
else return 0;
}
uint8_t getNumAnalogOutputsVPINsMax() {
if (_numHoldingRegisters > 0) return _firstVpin+_numDiscreteInputs+_numCoils+_numInputRegisters+_numHoldingRegisters-1;
else return 0;
}
void _display() override {
DIAG(F("Modbusnode configured on bus:%d nodeID:%d VPINs:%u-%u (B In) %u-%u (B Out) %u-%u (A In) %u-%u (A Out)"),
_busNo, _nodeID, getNumBinaryInputsVPINsMin(), getNumBinaryInputsVPINsMax(),
getNumBinaryOutputsVPINsMin(), getNumBinaryOutputsVPINsMax(),
getNumAnalogInputsVPINsMin(), getNumAnalogInputsVPINsMax(),
getNumAnalogOutputsVPINsMin(), getNumAnalogOutputsVPINsMax());
}
};
/**********************************************************************
* Modbus class
*
* This encapsulates the properties state of the bus and the
* transmission and reception of data across that bus. Each Modbus
* object owns a set of Modbusnode objects which represent the nodes
* attached to that bus.
**********************************************************************/
class Modbus : public IODevice {
private:
// Here we define the device-specific variables.
uint8_t _busNo;
uint8_t _adu[262];
uint16_t _calculateCrc(uint8_t *buf, uint16_t len);
uint16_t _getRegister(uint8_t *buf, uint16_t index);
void _setRegister(uint8_t *buf, uint16_t index, uint16_t value);
unsigned long _baud;
Modbusnode *_nodeListStart = NULL, *_nodeListEnd = NULL;
Modbusnode *_currentNode = NULL;
uint8_t _exceptionResponse = 0;
uint8_t getExceptionResponse();
uint16_t _receiveDataIndex = 0; // Index of next data byte to be received.
Modbus *_nextBus = NULL; // Pointer to next bus instance in list.
void setTimeout(unsigned long timeout);
unsigned long _cycleStartTime = 0;
unsigned long _timeoutStart = 0;
unsigned long _cycleTime; // target time between successive read/write cycles, microseconds
unsigned long _timeoutPeriod; // timeout on read responses, in microseconds.
unsigned long _currentMicros; // last value of micros() from _loop function.
unsigned long _postDelay; // delay time after transmission before switching off transmitter (in us)
unsigned long _byteTransmitTime; // time in us for transmission of one byte
int _operationCount = 0;
static Modbus *_busList; // linked list of defined bus instances
int _waitCounter = 0;
int _waitCounterB = 0;
int _waitA;
int _waitB;
// Helper function for error handling
void reportError(uint8_t status, bool fail=true) {
DIAG(F("EX-IOExpanderMB Node:%d Error"), _currentNode->getNodeID());
if (fail)
_deviceState = DEVSTATE_FAILED;
}
unsigned long _charTimeout;
unsigned long _frameTimeout;
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states
uint8_t _readState = RDS_IDLE;
unsigned long _lastDigitalRead = 0;
unsigned long _lastAnalogueRead = 0;
const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms
const unsigned long _analogueRefresh = 50000UL; // Delay refreshing analogue inputs for 50ms
// EX-IOExpander protocol flags
enum {
EXIOINIT = 0xE0, // Flag to initialise setup procedure
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration
EXIOVER = 0xE3, // Flag to get version
EXIORDAN = 0xE4, // Flag to read an analogue input
EXIOWRD = 0xE5, // Flag for digital write
EXIORDD = 0xE6, // Flag to read digital input
EXIOENAN = 0xE7, // Flag to enable an analogue pin
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
EXIOERR = 0xEF, // Flag we've received an error
};
int tasks[255][25];
int taskCnt = 0;
public:
void addTask(int taskNum, int paranCnt, int *param[]) {
tasks[taskCnt][0] = taskNum;
switch(taskNum) {
case 0: // configure pin
tasks[taskNum][1] = param[0]; // pin
tasks[taskNum][2] = param[1]; // configtype
tasks[taskNum][3] = param[2]; // paramcount
for (int i=0; i < param[2]; i++) {
tasks[taskNum][i+4] = param[i+3]; // params
}
break;
case 1: // configure analog in
tasks[taskNum][1] = param[0]; // pin
break;
}
}
int8_t _txPin;
uint8_t *rtu = _adu + 6;
uint8_t *tcp = _adu;
uint8_t *pdu = _adu + 7;
uint8_t *data = _adu + 8;
void updateCrc(uint8_t *buf, uint16_t len);
bool crcGood(uint8_t *buf, uint16_t len);
uint16_t getLength();
void setTransactionId(uint16_t transactionId);
void setProtocolId(uint16_t protocolId);
void setLength(uint16_t length);
void setUnitId(uint8_t unitId);
void setFunctionCode(uint8_t functionCode);
void setDataRegister(uint8_t index, uint16_t value);
void setRtuLen(uint16_t rtuLen);
void setTcpLen(uint16_t tcpLen);
void setPduLen(uint16_t pduLen);
void setDataLen(uint16_t dataLen);
uint16_t getTransactionId();
uint16_t getProtocolId();
uint8_t getUnitId();
uint8_t getFunctionCode();
uint16_t getDataRegister(uint8_t index);
uint16_t getRtuLen();
uint16_t getTcpLen();
uint16_t getPduLen();
uint16_t getDataLen();
void clearRxBuffer();
static void create(uint8_t busNo, HardwareSerial& serial, unsigned long baud, uint16_t cycleTimeMS=500, int8_t txPin=-1, int waitA=10, int waitB=10) {
new Modbus(busNo, serial, baud, cycleTimeMS, txPin, waitA, waitB);
}
HardwareSerial *_serialD;
// Device-specific initialisation
void _begin() override {
_serialD->begin(_baud, SERIAL_8N1);
unsigned long bitsPerChar = 10;
if (_baud <= 19200) {
_charTimeout = (bitsPerChar * 2500000) / _baud;
_frameTimeout = (bitsPerChar * 4500000) / _baud;
}
else {
_charTimeout = (bitsPerChar * 1000000) / _baud + 750;
_frameTimeout = (bitsPerChar * 1000000) / _baud + 1750;
}
clearRxBuffer();
#if defined(MODBUS_STM_OK)
pinMode(MODBUS_STM_OK, OUTPUT);
ArduinoPins::fastWriteDigital(MODBUS_STM_OK,LOW);
#endif
#if defined(MODBUS_STM_FAIL)
pinMode(MODBUS_STM_FAIL, OUTPUT);
ArduinoPins::fastWriteDigital(MODBUS_STM_FAIL,LOW);
#endif
#if defined(MODBUS_STM_COMM)
pinMode(MODBUS_STM_COMM, OUTPUT);
ArduinoPins::fastWriteDigital(MODBUS_STM_COMM,LOW);
#endif
#if defined(DIAG_IO)
_display();
#endif
}
int _CommMode = 0;
int _opperation = 0;
uint16_t _pullup;
uint16_t _pin;
// Loop function (overriding IODevice::_loop(unsigned long))
void _loop(unsigned long currentMicros) override;
// Display information about the device
void _display() override {
DIAG(F("Modbus Configured on Vpins:%d-%d %S"), _firstVpin, _firstVpin+_nPins-1,
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("OK"));
}
// Locate Modbusnode object with specified nodeID.
Modbusnode *findNode(uint8_t nodeID) {
for (Modbusnode *node = _nodeListStart; node != NULL; node = node->getNext()) {
if (node->getNodeID() == nodeID)
return node;
}
return NULL;
}
// Add new Modbusnode to the list of nodes for this bus.
void addNode(Modbusnode *newNode) {
if (!_nodeListStart)
_nodeListStart = newNode;
if (!_nodeListEnd)
_nodeListEnd = newNode;
else
_nodeListEnd->setNext(newNode);
//DIAG(F("Modbus: 260h nodeID:%d _nodeListStart:%d _nodeListEnd:%d"), newNode, _nodeListStart, _nodeListEnd);
}
protected:
Modbus(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, int8_t txPin, int waitA, int waitB);
public:
uint8_t getBusNumber() {
return _busNo;
}
static Modbus *findBus(uint8_t busNo) {
for (Modbus *bus=_busList; bus!=NULL; bus=bus->_nextBus) {
if (bus->_busNo == busNo) return bus;
}
return NULL;
}
};
#endif // IO_MODBUS_H