/* * © 2023, Neil McKechnie. All rights reserved. * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * DFPlayer is an MP3 player module with an SD card holder. It also has an integrated * amplifier, so it only needs a power supply and a speaker. * * This driver allows the device to be controlled through IODevice::write() and * IODevice::writeAnalogue() calls. * * The driver is configured as follows: * * DFPlayer::create(firstVpin, nPins, Serialn); * * Where firstVpin is the first vpin reserved for reading the device, * nPins is the number of pins to be allocated (max 5) * and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial1). * * Example: * In halSetup function within myHal.cpp: * DFPlayer::create(3500, 5, Serial1); * or in myAutomation.h: * HAL(DFPlayer, 3500, 5, Serial1) * * Writing an analogue value 1-2999 to the first pin (3500) will play the numbered file from the * SD card; e.g. a value of 1 will play the first file, 2 for the second file etc. * Writing an analogue value 0 to the first pin (3500) will stop the file playing; * Writing an analogue value 0-30 to the second pin (3501) will set the volume; * Writing a digital value of 1 to a pin will play the file corresponding to that pin, e.g. the first file will be played by setting pin 3500, the second by setting pin 3501 etc.; * Writing a digital value of 0 to any pin will stop the player; * Reading a digital value from any pin will return true(1) if the player is playing, false(0) otherwise. * * From EX-RAIL, the following commands may be used: * SET(3500) -- starts playing the first file (file 1) on the SD card * SET(3501) -- starts playing the second file (file 2) on the SD card * etc. * RESET(3500) -- stops all playing on the player * WAITFOR(3500) -- wait for the file currently being played by the player to complete * SERVO(3500,2,Instant) -- plays file 2 at current volume * SERVO(3501,20,Instant) -- Sets the volume to 20 * * NB The DFPlayer's serial lines are not 5V safe, so connecting the Arduino TX directly * to the DFPlayer's RX terminal will cause lots of noise over the speaker, or worse. * A 1k resistor in series with the module's RX terminal will alleviate this. * * Files on the SD card are numbered according to their order in the directory on the * card (as listed by the DIR command in Windows). This may not match the order of the files * as displayed by Windows File Manager, which sorts the file names. It is suggested that * files be copied into an empty SDcard in the desired order, one at a time. * * The driver now polls the device for its current status every second. Should the device * fail to respond it will be marked off-line and its busy indicator cleared, to avoid * lock-ups in automation scripts that are executing for a WAITFOR(). * * ********************************************************************************************* * 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus * The SC16IS752 has 64 bytes TX & RX FIFO buffer * First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be needed as the RX Fifo holds the reply * * */ #ifndef IO_I2CDFPlayer_h #define IO_I2CDFPlayer_h #include "IODevice.h" #include "I2CManager.h" #include "DIAG.h" //#define DIAG_I2CDFplayer //#define DIAG_I2CDFplayer_data //#define DIAG_I2CDFplayer_reg class I2CDFPlayer : public IODevice { private: const uint8_t MAXVOLUME=30; bool _playing = false; uint8_t _inputIndex = 0; unsigned long _commandSendTime; // Time (us) that last transmit took place. unsigned long _timeoutTime; uint8_t _recvCMD; // Last received command code byte bool _awaitingResponse = false; uint8_t _requestedVolumeLevel = MAXVOLUME; uint8_t _currentVolume = MAXVOLUME; int _requestedSong = -1; // -1=none, 0=stop, >0=file number uint8_t _repeat; uint8_t _previousCmd = true; // SC16IS752 defines I2CAddress _I2CAddress; I2CRB _rb; uint8_t _UART_CH; // Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1 uint8_t STOP_BIT = 0x00; // Value LCR bit 2 uint8_t PARITY_ENA = 0x00; // Value LCR bit 3 uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4 uint32_t BAUD_RATE = 9600; uint8_t PRESCALER = 0x01; // Value MCR bit 7 uint8_t TEMP_REG_VAL = 0x00; uint8_t FIFO_RX_LEVEL = 0x00; uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer uint8_t FIFO_TX_LEVEL = 0x00; uint8_t _outbuffer [11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes unsigned long SC16IS752_XTAL_FREQ = 1843200; // May need to change oscillator frequency to 14.7456Mhz (14745600) to allow for higher baud rates //unsigned long SC16IS752_XTAL_FREQ = 14745600; // Support for higher baud rates public: // Constructor I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH){ _firstVpin = firstVpin; _nPins = nPins; _I2CAddress = i2cAddress; _UART_CH = UART_CH; addDevice(this); } public: static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t UART_CH) { if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, UART_CH); } void _begin() override { // check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752 I2CManager.begin(); I2CManager.setClock(1000000); if (I2CManager.exists(_I2CAddress)){ DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString()); Init_SC16IS752(); // Initialize UART if (_deviceState == DEVSTATE_FAILED){ DIAG(F("SC16IS752 I2C:%s UART initialization failed"), _I2CAddress.toString()); } } else { DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString()); } #if defined(DIAG_IO) _display(); #endif // Now init DFPlayer // Send a query to the device to see if it responds _deviceState = DEVSTATE_INITIALISING; sendPacket(0x42); _timeoutTime = micros() + 5000000UL; // 5 second timeout _awaitingResponse = true; } void _loop(unsigned long currentMicros) override { // Read responses from device uint8_t status = _rb.status; if (status == I2C_STATUS_PENDING) return; // Busy, so don't do anything if (status == I2C_STATUS_OK) { processIncoming(currentMicros); // Check if a command sent to device has timed out. Allow 0.5 second for response if (_awaitingResponse && (int32_t)(currentMicros - _timeoutTime) > 0) { DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART channel: 0x%x"), _I2CAddress.toString(), _UART_CH); _deviceState = DEVSTATE_FAILED; _awaitingResponse = false; _playing = false; } } status = _rb.status; if (status == I2C_STATUS_PENDING) return; // Busy, try next time if (status == I2C_STATUS_OK) { // Send any commands that need to go. processOutgoing(currentMicros); } delayUntil(currentMicros + 10000); // Only enter every 10ms } // Check for incoming data on _serial, and update busy flag and other state accordingly void processIncoming(unsigned long currentMicros) { // Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF" RX_fifo_lvl(); if (FIFO_RX_LEVEL >= 10) { #ifdef DIAG_I2CDFplayer DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART_CH: 0x%x FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), _UART_CH, FIFO_RX_LEVEL); #endif _outbuffer[0] = REG_RHR << 3 | _UART_CH << 1; // Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now //delayUntil(currentMicros + 10000); // Allow time to get the data RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer #ifdef DIAG_I2CDFplayer_data DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, RX FIFO Data"), _I2CAddress.toString(), _UART_CH); for (int i = 0; i < sizeof _inbuffer; i++){ DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]); } #endif } else { FIFO_RX_LEVEL = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL next time return; // No data or not enough data in rx fifo, check again next time around } /* #ifdef DIAG_I2CDFplayer if (FIFO_RX_LEVEL > 10) { DIAG(F("I2CDFPlayer: %s FIFO_RX_LEVEL: %d"),_I2CAddress.toString(), FIFO_RX_LEVEL); } #endif */ bool ok = false; //DIAG(F("I2CDFPlayer: RX_BUFFER: %d"), RX_BUFFER); while (RX_BUFFER != 0) { int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL switch (_inputIndex) { case 0: if (c == 0x7E) ok = true; break; case 1: if (c == 0xFF) ok = true; break; case 2: if (c== 0x06) ok = true; break; case 3: _recvCMD = c; // CMD byte ok = true; break; case 6: switch (_recvCMD) { DIAG(F("I2CDFPlayer: %s, _recvCMD: 0x%x _awaitingResponse: 0x0%x"),_I2CAddress.toString(), _recvCMD, _awaitingResponse); case 0x42: // Response to status query _playing = (c != 0); // Mark the device online and cancel timeout if (_deviceState==DEVSTATE_INITIALISING) { _deviceState = DEVSTATE_NORMAL; #ifdef DIAG_I2CDFplayer DIAG(F("I2CDFPlayer: %s, UART_CH: 0x0%x, _deviceState: 0x0%x"),_I2CAddress.toString(), _UART_CH, _deviceState); #endif #ifdef DIAG_IO _display(); #endif } _awaitingResponse = false; break; case 0x3d: // End of play if (_playing) { #ifdef DIAG_IO DIAG(F("I2CDFPlayer: Finished")); #endif _playing = false; } break; case 0x40: // Error codes; 1: Module Busy DIAG(F("I2CDFPlayer: Error %d returned from device"), c); _playing = false; break; } ok = true; break; case 4: case 5: case 7: case 8: ok = true; // Skip over these bytes in message. break; case 9: if (c==0xef) { // Message finished } break; default: break; } if (ok){ _inputIndex++; // character as expected, so increment index RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex] } else { _inputIndex = 0; // otherwise reset. RX_BUFFER = 0; } } RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again } // Send any commands that need to be sent void processOutgoing(unsigned long currentMicros) { // When two commands are sent in quick succession, the device will often fail to // execute one. Testing has indicated that a delay of 100ms or more is required // between successive commands to get reliable operation. // If 100ms has elapsed since the last thing sent, then check if there's some output to do. if (((int32_t)currentMicros - _commandSendTime) > 100000) { if (_currentVolume > _requestedVolumeLevel) { // Change volume before changing song if volume is reducing. _currentVolume = _requestedVolumeLevel; sendPacket(0x06, _currentVolume); } else if (_requestedSong > 0) { // Change song sendPacket(0x03, _requestedSong); _requestedSong = -1; } else if (_requestedSong == 0) { sendPacket(0x16); // Stop playing _requestedSong = -1; } else if (_currentVolume < _requestedVolumeLevel) { // Change volume after changing song if volume is increasing. _currentVolume = _requestedVolumeLevel; sendPacket(0x06, _currentVolume); } else if ((int32_t)currentMicros - _commandSendTime > 1000000) { // Poll device every second that other commands aren't being sent, // to check if it's still connected and responding. sendPacket(0x42); if (!_awaitingResponse) { _timeoutTime = currentMicros + 5000000UL; // Timeout if no response within 5 seconds _awaitingResponse = true; } } } } // Write with value 1 starts playing a song. The relative pin number is the file number. // Write with value 0 stops playing. void _write(VPIN vpin, int value) override { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; if (value) { // Value 1, start playing #ifdef DIAG_IO DIAG(F("I2CDFPlayer: Play %d"), pin+1); #endif _requestedSong = pin+1; _playing = true; } else { // Value 0, stop playing #ifdef DIAG_IO DIAG(F("I2CDFPlayer: Stop")); #endif _requestedSong = 0; // No song _playing = false; } } // WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0. // Volume may be specified as second parameter to writeAnalogue. // If value is zero, the player stops playing. // WriteAnalogue on second pin sets the output volume. // //void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override { void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override { if (_deviceState == DEVSTATE_FAILED) return; uint8_t pin = vpin - _firstVpin; #ifdef DIAG_IO DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Repeat:0x0%x"), vpin, value, volume, cmd); #endif // Validate parameter. if (volume > MAXVOLUME) volume = MAXVOLUME; if (pin == 0) { // Play track if (value > 0) { if (volume > 0) _requestedVolumeLevel = volume; _requestedSong = value; if (cmd = 1){ // check for Repeat playback of song _repeat = true; } else { _repeat = false; } _playing = true; } else { _requestedSong = 0; // stop playing _playing = false; } } else if (pin == 1) { // Set volume (0-30) _requestedVolumeLevel = value; } } // A read on any pin indicates whether the player is still playing. int _read(VPIN) override { if (_deviceState == DEVSTATE_FAILED) return false; return _playing; } void _display() override { DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S"), _firstVpin, _firstVpin+_nPins-1, (_deviceState==DEVSTATE_FAILED) ? F("OFFLINE") : F("")); } private: // 7E FF 06 0F 00 01 01 xx xx EF // 0 -> 7E is start code // 1 -> FF is version // 2 -> 06 is length // 3 -> 0F is command // 4 -> 00 is no receive // 5~6 -> 01 01 is argument // 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 ) // 9 -> EF is end code void sendPacket(uint8_t command, uint16_t arg = 0) { FIFO_TX_LEVEL = 0; // Reset FIFO_TX_LEVEL uint8_t out[] = { 0x7E, 0xFF, 06, command, 00, static_cast(arg >> 8), static_cast(arg & 0x00ff), 00, 00, 0xEF }; setChecksum(out); // Prepend the DFPlayer command with REG address and UART Channel in _outbuffer _outbuffer[0] = REG_THR << 3 | _UART_CH << 1; //TX FIFO and UART Channel for ( int i = 1; i < sizeof(out)+1 ; i++){ _outbuffer[i] = out[i-1]; } #ifdef DIAG_I2CDFplayer_data DIAG(F("SC16IS752: I2C: %s Sent packet function"), _I2CAddress.toString()); for (int i = 0; i < sizeof _outbuffer; i++){ DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]); } #endif TX_fifo_lvl(); if(FIFO_TX_LEVEL > 0){ //FIFO is empty I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb); //I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer)); #ifdef DIAG_I2CDFplayer DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: 0x%x"), _I2CAddress.toString(), _UART_CH); #endif } else { DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: 0x%x"), _I2CAddress.toString(), _UART_CH); _deviceState = DEVSTATE_FAILED; // This should not happen } _commandSendTime = micros(); } uint16_t calcChecksum(uint8_t* packet) { uint16_t sum = 0; for (int i = 1; i < 7; i++) { sum += packet[i]; } return -sum; } void setChecksum(uint8_t* out) { uint16_t sum = calcChecksum(out); out[7] = (sum >> 8); out[8] = (sum & 0xff); } // SC16IS752 functions // Initialise SC16IS752 only for this channel // First a software reset // Enable FIFO and clear TX & RX FIFO // Need to set the following registers // LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor), // WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE // MCR bit 7=0 clock divisor devide-by-1 clock input // DLH most significant part of divisor // DLL least significant part of divisor // // BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized // void Init_SC16IS752(){ // Return value is in _deviceState #ifdef DIAG_I2CDFplayer DIAG(F("SC16IS752: Initialize I2C: %s , UART Ch: 0x%x"), _I2CAddress.toString(), _UART_CH); #endif uint16_t _divisor = (SC16IS752_XTAL_FREQ / PRESCALER) / (BAUD_RATE * 16); TEMP_REG_VAL = 0x08; // UART Software reset UART_WriteRegister(REG_IOCONTROL, TEMP_REG_VAL); TEMP_REG_VAL = 0x07; // Reset FIFO, clear RX & TX FIFO UART_WriteRegister(REG_FCR, TEMP_REG_VAL); TEMP_REG_VAL = 0x00; // Set MCR to all 0, includes Clock divisor UART_WriteRegister(REG_MCR, TEMP_REG_VAL); TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE; UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch enabled UART_WriteRegister(REG_DLL, (uint8_t)_divisor); // Write DLL UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8)); // Write DLH UART_ReadRegister(REG_LCR); TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit UART_WriteRegister(REG_LCR, TEMP_REG_VAL); // Divisor latch disabled uint8_t status = _rb.status; if (status != I2C_STATUS_OK) { DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status)); _deviceState = DEVSTATE_FAILED; } else { #ifdef DIAG_IO DIAG(F("SC16IS752: I2C: %s, _deviceState: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status)); #endif _deviceState = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer } } // Read the Receive FIFO Level register (RXLVL), return a single unsigned integer // of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero // value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data void RX_fifo_lvl(){ UART_ReadRegister(REG_RXLV); FIFO_RX_LEVEL = _inbuffer[0]; #ifdef DIAG_I2CDFplayer if (FIFO_RX_LEVEL > 0){ // DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_RX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, _inbuffer[0]); } #endif } // Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer // of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero // value from 0 (0x00) to 64 (0x40) // void TX_fifo_lvl(){ UART_ReadRegister(REG_TXLV); FIFO_TX_LEVEL = _inbuffer[0]; #ifdef DIAG_I2CDFplayer // DIAG(F("SC16IS752: At I2C: %s, UART channel: 0x%x, FIFO_TX_LEVEL: 0d%d"), _I2CAddress.toString(), _UART_CH, FIFO_TX_LEVEL); #endif } //void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, I2CRB &_rb){ void UART_WriteRegister(uint8_t UART_REG, uint8_t Val){ _outbuffer[0] = UART_REG << 3 | _UART_CH << 1; _outbuffer[1] = Val; #ifdef DIAG_I2CDFplayer_reg DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _outbuffer[1]); #endif I2CManager.write(_I2CAddress, _outbuffer, 2); } void UART_ReadRegister(uint8_t UART_REG){ _outbuffer[0] = UART_REG << 3 | _UART_CH << 1; // _outbuffer[0] has now UART_REG and UART_CH I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1); // _inbuffer has the REG data #ifdef DIAG_I2CDFplayer_reg DIAG(F("SC16IS752: Read register at I2C: %s, UART channel: 0x%x, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _UART_CH, UART_REG, _inbuffer[0]); #endif } // SC16IS752 General register set (from the datasheet) enum : uint8_t{ REG_RHR = 0x00, // FIFO Read REG_THR = 0x00, // FIFO Write REG_IER = 0x01, // Interrupt Enable Register R/W REG_FCR = 0x02, // FIFO Control Register Write REG_IIR = 0x02, // Interrupt Identification Register Read REG_LCR = 0x03, // Line Control Register R/W REG_MCR = 0x04, // Modem Control Register R/W REG_LSR = 0x05, // Line Status Register Read REG_MSR = 0x06, // Modem Status Register Read REG_SPR = 0x07, // Scratchpad Register R/W REG_TCR = 0x06, // Transmission Control Register R/W REG_TLR = 0x07, // Trigger Level Register R/W REG_TXLV = 0x08, // Transmitter FIFO Level register Read REG_RXLV = 0x09, // Receiver FIFO Level register Read REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W REG_IOCONTROL = 0x0E, // I/O Control register R/W REG_EFCR = 0x0F, // Extra Features Control Register R/W }; // SC16IS752 Special register set enum : uint8_t{ REG_DLL = 0x00, // Division registers R/W REG_DLH = 0x01, // Division registers R/W }; // SC16IS752 Enhanced regiter set enum : uint8_t{ REG_EFR = 0X02, // Enhanced Features Register R/W REG_XON1 = 0x04, // R/W REG_XON2 = 0x05, // R/W REG_XOFF1 = 0x06, // R/W REG_XOFF2 = 0x07, // R/W }; }; #endif // IO_I2CDFPlayer_h