/* * © 2022-2023 Paul M. Antoine * © 2021 Mike S * © 2021 Fred Decker * © 2020 Chris Harlow * © 2022,2023 Harald Barth * All rights reserved. * * This file is part of CommandStation-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #ifndef MotorDriver_h #define MotorDriver_h #include "FSH.h" #include "IODevice.h" #include "DCCTimer.h" // use powers of two so we can do logical and/or on the track modes in if clauses. // RACK_MODE_DCX is (TRACK_MODE_DC|TRACK_MODE_INV) template inline T operator~ (T a) { return (T)~(int)a; } template inline T operator| (T a, T b) { return (T)((int)a | (int)b); } template inline T operator& (T a, T b) { return (T)((int)a & (int)b); } template inline T operator^ (T a, T b) { return (T)((int)a ^ (int)b); } enum TRACK_MODE : byte {TRACK_MODE_NONE = 1, TRACK_MODE_MAIN = 2, TRACK_MODE_PROG = 4, TRACK_MODE_DC = 8, TRACK_MODE_EXT = 16, TRACK_MODE_BOOST = 32, TRACK_MODE_ALL = 62, // only to operate all tracks TRACK_MODE_INV = 64, TRACK_MODE_DCX = 72 /*DC + INV*/, TRACK_MODE_AUTOINV = 128}; #define setHIGH(fastpin) *fastpin.inout |= fastpin.maskHIGH #define setLOW(fastpin) *fastpin.inout &= fastpin.maskLOW #define isHIGH(fastpin) (*fastpin.inout & fastpin.maskHIGH) #define isLOW(fastpin) (!isHIGH(fastpin)) #define TOKENPASTE(x, y) x ## y #define TOKENPASTE2(x, y) TOKENPASTE(x, y) #if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560) #define HAVE_PORTA(X) X #define HAVE_PORTB(X) X #define HAVE_PORTC(X) X #endif #if defined(ARDUINO_AVR_UNO) #define HAVE_PORTB(X) X #endif #if defined(ARDUINO_ARCH_SAMD) #define PORTA REG_PORT_OUT0 #define HAVE_PORTA(X) X #define PORTB REG_PORT_OUT1 #define HAVE_PORTB(X) X #endif #if defined(ARDUINO_ARCH_STM32) #define PORTA GPIOA->ODR #define HAVE_PORTA(X) X #define PORTB GPIOB->ODR #define HAVE_PORTB(X) X #define PORTC GPIOC->ODR #define HAVE_PORTC(X) X #define PORTD GPIOD->ODR #define HAVE_PORTD(X) X #if defined(GPIOE) #define PORTE GPIOE->ODR #define HAVE_PORTE(X) X #endif #if defined(GPIOF) #define PORTF GPIOF->ODR #define HAVE_PORTF(X) X #endif #endif // if macros not defined as pass-through we define // them here as someting that is valid as a // statement and evaluates to false. #ifndef HAVE_PORTA #define HAVE_PORTA(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTB #define HAVE_PORTB(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTC #define HAVE_PORTC(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTD #define HAVE_PORTD(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTE #define HAVE_PORTE(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif #ifndef HAVE_PORTF #define HAVE_PORTF(X) byte TOKENPASTE2(Unique_, __LINE__) __attribute__((unused)) =0 #endif // Virtualised Motor shield 1-track hardware Interface #ifndef UNUSED_PIN // sync define with the one in MotorDrivers.h #define UNUSED_PIN 255 // inside uint8_t #endif #define MAX_PIN 254 class pinpair { public: pinpair(byte p1, byte p2) { pin = p1; invpin = p2; }; byte pin = UNUSED_PIN; byte invpin = UNUSED_PIN; }; #if defined(__IMXRT1062__) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_ESP32) || defined(ARDUINO_ARCH_SAMD) || defined(ARDUINO_ARCH_STM32) typedef uint32_t portreg_t; #else typedef uint8_t portreg_t; #endif struct FASTPIN { volatile portreg_t *inout; portreg_t maskHIGH; portreg_t maskLOW; volatile portreg_t *shadowinout; }; // The port registers that are shadowing // the real port registers. These are // defined in Motordriver.cpp extern volatile portreg_t shadowPORTA; extern volatile portreg_t shadowPORTB; extern volatile portreg_t shadowPORTC; extern volatile portreg_t shadowPORTD; extern volatile portreg_t shadowPORTE; extern volatile portreg_t shadowPORTF; enum class POWERMODE : byte { OFF, ON, OVERLOAD, ALERT }; class MotorDriver { public: MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int16_t brake_pin, byte current_pin, float senseFactor, unsigned int tripMilliamps, int16_t fault_pin); void setPower( POWERMODE mode); POWERMODE getPower() { return powerMode;} // as the port registers can be shadowed to get syncronized DCC signals // we need to take care of that and we have to turn off interrupts if // we setSignal() or setBrake() or setPower() during that time as // otherwise the call from interrupt context can undo whatever we do // from outside interrupt void setBrake( bool on, bool interruptContext=false); __attribute__((always_inline)) inline void setSignal( bool high) { #ifndef ARDUINO_ARCH_ESP32 if (invertPhase) high = !high; #endif if (trackPWM) { DCCTimer::setPWM(signalPin,high); } else { if (high) { setHIGH(fastSignalPin); if (dualSignal) setLOW(fastSignalPin2); } else { setLOW(fastSignalPin); if (dualSignal) setHIGH(fastSignalPin2); } } }; inline void enableSignal(bool on) { if (on) pinMode(signalPin, OUTPUT); else pinMode(signalPin, INPUT); if (signalPin2 != UNUSED_PIN) { if (on) pinMode(signalPin2, OUTPUT); else pinMode(signalPin2, INPUT); } }; inline pinpair getSignalPin() { return pinpair(signalPin,signalPin2); }; void setDCSignal(byte speedByte); void throttleInrush(bool on); inline void detachDCSignal() { #if defined(__arm__) pinMode(brakePin, OUTPUT); #elif defined(ARDUINO_ARCH_ESP32) ledcDetachPin(brakePin); #else setDCSignal(128); #endif }; int getCurrentRaw(bool fromISR=false); unsigned int raw2mA( int raw); unsigned int mA2raw( unsigned int mA); inline bool brakeCanPWM() { #if defined(ARDUINO_ARCH_ESP32) return (brakePin != UNUSED_PIN); // This was just (true) but we probably do need to check for UNUSED_PIN! #elif defined(__arm__) // On ARM we can use digitalPinHasPWM return ((brakePin!=UNUSED_PIN) && (digitalPinHasPWM(brakePin))); #elif defined(digitalPinToTimer) return ((brakePin!=UNUSED_PIN) && (digitalPinToTimer(brakePin))); #else return (brakePin<14 && brakePin >1); #endif } inline int getRawCurrentTripValue() { return rawCurrentTripValue; } bool isPWMCapable(); bool canMeasureCurrent(); bool trackPWM = false; // this track uses PWM timer to generate the DCC waveform bool commonFaultPin = false; // This is a stupid motor shield which has only a common fault pin for both outputs inline byte setCommonFaultPin() { return commonFaultPin = true; } inline byte getFaultPin() { return faultPin; } inline void makeProgTrack(bool on) { // let this output know it's a prog track. isProgTrack = on; } void checkPowerOverload(bool useProgLimit, byte trackno); inline void setTrackLetter(char c) { trackLetter = c; }; // this returns how much time has passed since the last power change. If it // was really long ago (approx > 52min) advance counter approx 35 min so that // we are at 18 minutes again. Times for 32 bit unsigned long. inline unsigned long microsSinceLastPowerChange(POWERMODE mode) { unsigned long now = micros(); unsigned long diff = now - lastPowerChange[(int)mode]; if (diff > (1UL << (7 *sizeof(unsigned long)))) // 2^(4*7)us = 268.4 seconds lastPowerChange[(int)mode] = now - 30000000UL; // 30 seconds ago return diff; }; #ifdef ANALOG_READ_INTERRUPT bool sampleCurrentFromHW(); void startCurrentFromHW(); #endif inline void setMode(TRACK_MODE m) { trackMode = m; invertOutput(trackMode & TRACK_MODE_INV); }; inline void invertOutput() { // toggles output inversion invertPhase = !invertPhase; invertOutput(invertPhase); }; inline void invertOutput(bool b) { // sets output inverted or not if (b) invertPhase = 1; else invertPhase = 0; #if defined(ARDUINO_ARCH_ESP32) pinpair p = getSignalPin(); uint32_t *outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.pin); if (invertPhase) // set or clear the invert bit in the gpio out register *outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S); else *outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S); if (p.invpin != UNUSED_PIN) { outreg = (uint32_t *)(GPIO_FUNC0_OUT_SEL_CFG_REG + 4*p.invpin); if (invertPhase) // clear or set the invert bit in the gpio out register *outreg &= ~((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S); else *outreg |= ((uint32_t)0x1 << GPIO_FUNC0_OUT_INV_SEL_S); } #endif }; inline TRACK_MODE getMode() { return trackMode; }; private: char trackLetter = '?'; bool isProgTrack = false; // tells us if this is a prog track void getFastPin(const FSH* type,int pin, bool input, FASTPIN & result); inline void getFastPin(const FSH* type,int pin, FASTPIN & result) { getFastPin(type, pin, 0, result); }; // side effect sets lastCurrent and tripValue inline bool checkCurrent(bool useProgLimit) { tripValue= useProgLimit?progTripValue:getRawCurrentTripValue(); lastCurrent = getCurrentRaw(); if (lastCurrent < 0) lastCurrent = -lastCurrent; return lastCurrent >= tripValue; }; // side effect sets lastCurrent inline bool checkFault() { lastCurrent = getCurrentRaw(); return lastCurrent < 0; }; VPIN powerPin; byte signalPin, signalPin2, currentPin, faultPin, brakePin; FASTPIN fastSignalPin, fastSignalPin2, fastBrakePin,fastFaultPin; bool dualSignal; // true to use signalPin2 bool invertBrake; // brake pin passed as negative means pin is inverted bool invertPower; // power pin passed as negative means pin is inverted bool invertFault; // fault pin passed as negative means pin is inverted bool invertPhase = 0; // phase of out pin is inverted // Raw to milliamp conversion factors avoiding float data types. // Milliamps=rawADCreading * sensefactorInternal / senseScale // // senseScale is chosen as 256 to give enough scale for 2 decimal place // raw->mA conversion with an ultra fast optimised integer multiplication int senseFactorInternal; // set to senseFactor * senseScale static const int senseScale=256; int senseOffset; unsigned int tripMilliamps; int rawCurrentTripValue; // current sampling POWERMODE powerMode; POWERMODE lastPowerMode; unsigned long lastPowerChange[4]; // timestamp in microseconds unsigned long lastBadSample; // timestamp in microseconds // used to sync restore time when common Fault pin detected static unsigned long globalOverloadStart; // timestamp in microseconds int progTripValue; int lastCurrent; //temp value int tripValue; //temp value #ifdef ANALOG_READ_INTERRUPT volatile unsigned long sampleCurrentTimestamp; volatile uint16_t sampleCurrent; #endif int maxmA; int tripmA; // Times for overload management. Unit: microseconds. // Base for wait time until power is turned on again static const unsigned long POWER_SAMPLE_OVERLOAD_WAIT = 40000UL; // Time after we consider all faults old and forgotten static const unsigned long POWER_SAMPLE_ALL_GOOD = 5000000UL; // Time after which we consider a ALERT over static const unsigned long POWER_SAMPLE_ALERT_GOOD = 20000UL; // How long to ignore fault pin if current is under limit static const unsigned long POWER_SAMPLE_IGNORE_FAULT_LOW = 100000UL; // How long to ignore fault pin if current is higher than limit static const unsigned long POWER_SAMPLE_IGNORE_FAULT_HIGH = 5000UL; // How long to wait between overcurrent and turning off static const unsigned long POWER_SAMPLE_IGNORE_CURRENT = 100000UL; // Upper limit for retry period static const unsigned long POWER_SAMPLE_RETRY_MAX = 10000000UL; // Trip current for programming track, 250mA. Change only if you really // need to be non-NMRA-compliant because of decoders that are not either. static const int TRIP_CURRENT_PROG=250; unsigned long power_sample_overload_wait = POWER_SAMPLE_OVERLOAD_WAIT; unsigned int power_good_counter = 0; TRACK_MODE trackMode = TRACK_MODE_NONE; // we assume track not assigned at startup }; #endif