/* * © 2022, Peter Cole. All rights reserved. * * This file is part of EX-CommandStation * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices. * This device driver will configure the device on startup, along with * interacting with the device for all input/output duties. * * To create EX-IOExpander devices, these are defined in myHal.cpp: * (Note the device driver is included by default) * * void halSetup() { * // EXIOExpander::create(vpin, num_vpins, i2c_address); * EXIOExpander::create(800, 18, 0x65); * } * * All pins on an EX-IOExpander device are allocated according to the pin map for the specific * device in use. There is no way for the device driver to sanity check pins are used for the * correct purpose, however the EX-IOExpander device's pin map will prevent pins being used * incorrectly (eg. A6/7 on Nano cannot be used for digital input/output). */ #ifndef IO_EX_IOEXPANDER_H #define IO_EX_IOEXPANDER_H #include "I2CManager.h" #include "DIAG.h" #include "FSH.h" ///////////////////////////////////////////////////////////////////////////////////////////////////// /* * IODevice subclass for EX-IOExpander. */ class EXIOExpander : public IODevice { public: static void create(VPIN vpin, int nPins, uint8_t i2cAddress) { if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress); static void create(VPIN vpin, int nPins, uint8_t i2cAddress) { if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress); } private: // Constructor EXIOExpander(VPIN firstVpin, int nPins, uint8_t i2cAddress) { EXIOExpander(VPIN firstVpin, int nPins, uint8_t i2cAddress) { _firstVpin = firstVpin; _nPins = nPins; _i2cAddress = i2cAddress; _digitalPinBytes = (nPins+7)/8; _digitalInputStates=(byte*) calloc(_digitalPinBytes,1); addDevice(this); } void _begin() { // Initialise EX-IOExander device I2CManager.begin(); if (I2CManager.exists(_i2cAddress)) { _command2Buffer[0] = EXIOINIT; _command2Buffer[1] = _nPins; // Send config, if EXIOINITA returned, we're good, setup analogue input buffer, otherwise go offline I2CManager.read(_i2cAddress, _receive2Buffer, 2, _command2Buffer, 2); if (_receive2Buffer[0] == EXIOINITA) { _numAnaloguePins = _receive2Buffer[1]; _analoguePinBytes = _numAnaloguePins * 2; _analogueInputStates = (byte*) calloc(_analoguePinBytes, 1); _analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1); } else { _command2Buffer[0] = EXIOINIT; _command2Buffer[1] = _nPins; // Send config, if EXIOINITA returned, we're good, setup analogue input buffer, otherwise go offline I2CManager.read(_i2cAddress, _receive2Buffer, 2, _command2Buffer, 2); if (_receive2Buffer[0] == EXIOINITA) { _numAnaloguePins = _receive2Buffer[1]; _analoguePinBytes = _numAnaloguePins * 2; _analogueInputStates = (byte*) calloc(_analoguePinBytes, 1); _analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1); } else { DIAG(F("ERROR configuring EX-IOExpander device, I2C:x%x"), _i2cAddress); _deviceState = DEVSTATE_FAILED; return; } // We now need to retrieve the analogue pin map _command1Buffer[0] = EXIOINITA; I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1); // We now need to retrieve the analogue pin map _command1Buffer[0] = EXIOINITA; I2CManager.read(_i2cAddress, _analoguePinMap, _numAnaloguePins, _command1Buffer, 1); // Attempt to get version, if we don't get it, we don't care, don't go offline _command1Buffer[0] = EXIOVER; I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1); _command1Buffer[0] = EXIOVER; I2CManager.read(_i2cAddress, _versionBuffer, 3, _command1Buffer, 1); _majorVer = _versionBuffer[0]; _minorVer = _versionBuffer[1]; _patchVer = _versionBuffer[2]; DIAG(F("EX-IOExpander device found, I2C:x%x, Version v%d.%d.%d"), _i2cAddress, _versionBuffer[0], _versionBuffer[1], _versionBuffer[2]); #ifdef DIAG_IO _display(); #endif } else { DIAG(F("EX-IOExpander device not found, I2C:x%x"), _i2cAddress); _deviceState = DEVSTATE_FAILED; } } // Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if in use bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override { if (paramCount != 1) return false; bool pullup = params[0]; int pin = vpin - _firstVpin; _digitalOutBuffer[0] = EXIODPUP; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = pullup; I2CManager.write(_i2cAddress, _digitalOutBuffer, 3); return true; } // Analogue input pin configuration, used to enable on EX-IOExpander device // Analogue input pin configuration, used to enable on EX-IOExpander device int _configureAnalogIn(VPIN vpin) override { int pin = vpin - _firstVpin; _command2Buffer[0] = EXIOENAN; _command2Buffer[1] = pin; I2CManager.write(_i2cAddress, _command2Buffer, 2); return true; } // Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads) void _loop(unsigned long currentMicros) override { (void)currentMicros; // remove warning _command1Buffer[0] = EXIORDD; I2CManager.read(_i2cAddress, _digitalInputStates, _digitalPinBytes, _command1Buffer, 1); _command1Buffer[0] = EXIORDAN; I2CManager.read(_i2cAddress, _analogueInputStates, _analoguePinBytes, _command1Buffer, 1); } // Obtain the correct analogue input value int _readAnalogue(VPIN vpin) override { int pin = vpin - _firstVpin; uint8_t _pinLSBByte; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { _pinLSBByte = aPin * 2; } } uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } // Obtain the correct digital input value int _read(VPIN vpin) override { int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = _digitalInputStates[pinByte] >> (pin - pinByte * 8); return value; } void _write(VPIN vpin, int value) override { int pin = vpin - _firstVpin; _digitalOutBuffer[0] = EXIOWRD; _digitalOutBuffer[1] = pin; _digitalOutBuffer[2] = value; I2CManager.write(_i2cAddress, _digitalOutBuffer, 3); } void _display() override { DIAG(F("EX-IOExpander I2C:x%x v%d.%d.%d Vpins %d-%d %S"), DIAG(F("EX-IOExpander I2C:x%x v%d.%d.%d Vpins %d-%d %S"), _i2cAddress, _majorVer, _minorVer, _patchVer, (int)_firstVpin, (int)_firstVpin+_nPins-1, _deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F("")); } uint8_t _i2cAddress; uint8_t _numAnaloguePins; byte _digitalOutBuffer[3]; uint8_t _versionBuffer[3]; uint8_t _majorVer = 0; uint8_t _minorVer = 0; uint8_t _patchVer = 0; byte* _digitalInputStates; byte* _analogueInputStates; uint8_t _digitalPinBytes = 0; uint8_t _analoguePinBytes = 0; byte _command1Buffer[1]; byte _command2Buffer[2]; byte _receive2Buffer[2]; uint8_t* _analoguePinMap; byte _command1Buffer[1]; byte _command2Buffer[2]; byte _receive2Buffer[2]; uint8_t* _analoguePinMap; enum { EXIOINIT = 0xE0, // Flag to initialise setup procedure EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration EXIOVER = 0xE3, // Flag to get version EXIORDAN = 0xE4, // Flag to read an analogue input EXIOWRD = 0xE5, // Flag for digital write EXIORDD = 0xE6, // Flag to read digital input EXIOENAN = 0xE7, // Flag eo enable an analogue pin EXIOINITA = 0xE8, // Flag we're receiving analogue pin info }; }; #endif