/* * © 2021-2024, Harald Barth. * * This file is part of DCC-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see <https://www.gnu.org/licenses/>. */ #if defined(ARDUINO_ARCH_ESP32) #include "defines.h" #include "DIAG.h" #include "DCCRMT.h" #include "DCCTimer.h" #include "DCCWaveform.h" // for MAX_PACKET_SIZE #include "soc/gpio_sig_map.h" // check for right type of ESP32 #include "soc/soc_caps.h" #ifndef SOC_RMT_MEM_WORDS_PER_CHANNEL #error This symobol should be defined #endif #if SOC_RMT_MEM_WORDS_PER_CHANNEL < 64 #warning This is not an ESP32-WROOM but some other unsupported variant #warning You are outside of the DCC-EX supported hardware #endif static const byte RMT_CHAN_PER_DCC_CHAN = 2; // Number of bits resulting out of X bytes of DCC payload data // Each byte has one bit extra and at the end we have one EOF marker #define DATA_LEN(X) ((X)*9+1) #if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4,2,0) #error wrong IDF version #endif void setDCCBit1(rmt_item32_t* item) { item->level0 = 1; item->duration0 = DCC_1_HALFPERIOD; item->level1 = 0; item->duration1 = DCC_1_HALFPERIOD; } void setDCCBit0(rmt_item32_t* item) { item->level0 = 1; item->duration0 = DCC_0_HALFPERIOD; item->level1 = 0; item->duration1 = DCC_0_HALFPERIOD; } // special long zero to trigger scope void setDCCBit0Long(rmt_item32_t* item) { item->level0 = 1; item->duration0 = DCC_0_HALFPERIOD + DCC_0_HALFPERIOD/10; item->level1 = 0; item->duration1 = DCC_0_HALFPERIOD + DCC_0_HALFPERIOD/10; } void setEOT(rmt_item32_t* item) { item->val = 0; } // This is an array that contains the this pointers // to all uses channel objects. This is used to determine // which of the channels was triggering the ISR as there // is only ONE common ISR routine for all channels. RMTChannel *channelHandle[8] = { 0 }; void IRAM_ATTR interrupt(rmt_channel_t channel, void *t) { RMTChannel *tt = channelHandle[channel]; if (tt) tt->RMTinterrupt(); if (channel == 0) DCCTimer::updateMinimumFreeMemoryISR(0); } RMTChannel::RMTChannel(pinpair pins, bool isMain) { byte ch; byte plen; // Below we check if the DCC packet actually fits into the RMT hardware // Currently MAX_PACKET_SIZE = 5 so with checksum there are // MAX_PACKET_SIZE+1 data packets. Each need DATA_LEN (9) bits. // To that we add the preamble length, the fencepost DCC end bit // and the RMT EOF marker. // SOC_RMT_MEM_WORDS_PER_CHANNEL is either 64 (original WROOM) or // 48 (all other ESP32 like the -C3 or -S2 // The formula to get the possible MAX_PACKET_SIZE is // // ALLOCATED = RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL // MAX_PACKET_SIZE = floor((ALLOCATED - PREAMBLE_LEN - 2)/9 - 1) // if (isMain) { ch = 0; plen = PREAMBLE_BITS_MAIN; static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_MAIN + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL, "Number of DCC packet bits greater than ESP32 RMT memory available"); } else { ch = RMT_CHAN_PER_DCC_CHAN; // number == offset plen = PREAMBLE_BITS_PROG; static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_PROG + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL, "Number of DCC packet bits greater than ESP32 RMT memory available"); } // preamble preambleLen = plen+2; // plen 1 bits, one 0 bit and one EOF marker preamble = (rmt_item32_t*)malloc(preambleLen*sizeof(rmt_item32_t)); for (byte n=0; n<plen; n++) setDCCBit1(preamble + n); // preamble bits #ifdef SCOPE setDCCBit0Long(preamble + plen); // start of packet 0 bit long version #else setDCCBit0(preamble + plen); // start of packet 0 bit normal version #endif setEOT(preamble + plen + 1); // EOT marker // idle idleLen = 28; idle = (rmt_item32_t*)malloc(idleLen*sizeof(rmt_item32_t)); if (isMain) { for (byte n=0; n<8; n++) // 0 to 7 setDCCBit1(idle + n); for (byte n=8; n<18; n++) // 8, 9 to 16, 17 setDCCBit0(idle + n); for (byte n=18; n<26; n++) // 18 to 25 setDCCBit1(idle + n); } else { for (byte n=0; n<26; n++) // all zero setDCCBit0(idle + n); } setDCCBit1(idle + 26); // end bit setEOT(idle + 27); // EOT marker // data: max packet size today is 5 + checksum maxDataLen = DATA_LEN(MAX_PACKET_SIZE+1); // plus checksum data = (rmt_item32_t*)malloc(maxDataLen*sizeof(rmt_item32_t)); rmt_config_t config; // Configure the RMT channel for TX bzero(&config, sizeof(rmt_config_t)); config.rmt_mode = RMT_MODE_TX; config.channel = channel = (rmt_channel_t)ch; config.clk_div = RMT_CLOCK_DIVIDER; config.gpio_num = (gpio_num_t)pins.pin; config.mem_block_num = RMT_CHAN_PER_DCC_CHAN; // use config ESP_ERROR_CHECK(rmt_config(&config)); addPin(pins.invpin, true); // NOTE: ESP_INTR_FLAG_IRAM is *NOT* included in this bitmask ESP_ERROR_CHECK(rmt_driver_install(config.channel, 0, ESP_INTR_FLAG_LOWMED|ESP_INTR_FLAG_SHARED)); // DIAG(F("Register interrupt on core %d"), xPortGetCoreID()); ESP_ERROR_CHECK(rmt_set_tx_loop_mode(channel, true)); channelHandle[channel] = this; // used by interrupt rmt_register_tx_end_callback(interrupt, 0); rmt_set_tx_intr_en(channel, true); DIAG(F("Channel %d DCC signal for %s start"), config.channel, isMain ? "MAIN" : "PROG"); // send one bit to kickstart the signal, remaining data will come from the // packet queue. We intentionally do not wait for the RMT TX complete here. //rmt_write_items(channel, preamble, preambleLen, false); RMTprefill(); dataReady = false; } void RMTChannel::RMTprefill() { rmt_fill_tx_items(channel, preamble, preambleLen, 0); rmt_fill_tx_items(channel, idle, idleLen, preambleLen-1); } const byte transmitMask[] = {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01}; int RMTChannel::RMTfillData(const byte buffer[], byte byteCount, byte repeatCount=0) { //int RMTChannel::RMTfillData(dccPacket packet) { // dataReady: Signals to then interrupt routine. It is set when // we have data in the channel buffer which can be copied out // to the HW. dataRepeat on the other hand signals back to // the caller of this function if the data has been sent enough // times (0 to 3 means 1 to 4 times in total). if (dataRepeat > 0) // we have still old work to do return dataRepeat; if (dataReady == true) // the packet is not copied out yet return 1000; if (DATA_LEN(byteCount) > maxDataLen) { // this would overun our allocated memory for data DIAG(F("Can not convert DCC bytes # %d to DCC bits %d, buffer too small"), byteCount, maxDataLen); return -1; // something very broken, can not convert packet } // convert bytes to RMT stream of "bits" byte bitcounter = 0; for(byte n=0; n<byteCount; n++) { for(byte bit=0; bit<8; bit++) { if (buffer[n] & transmitMask[bit]) setDCCBit1(data + bitcounter++); else setDCCBit0(data + bitcounter++); } setDCCBit0(data + bitcounter++); // zero at end of each byte } setDCCBit1(data + bitcounter-1); // overwrite previous zero bit with one bit setEOT(data + bitcounter++); // EOT marker dataLen = bitcounter; noInterrupts(); // keep dataReady and dataRepeat consistnet to each other dataReady = true; dataRepeat = repeatCount+1; // repeatCount of 0 means send once interrupts(); return 0; } void IRAM_ATTR RMTChannel::RMTinterrupt() { //no rmt_tx_start(channel,true) as we run in loop mode //preamble is always loaded at beginning of buffer packetCounter++; if (!dataReady && dataRepeat == 0) { // we did run empty rmt_fill_tx_items(channel, idle, idleLen, preambleLen-1); return; // nothing to do about that } // take care of incoming data if (dataReady) { // if we have new data, fill while preamble is running rmt_fill_tx_items(channel, data, dataLen, preambleLen-1); dataReady = false; if (dataRepeat == 0) // all data should go out at least once DIAG(F("Channel %d DCC signal lost data"), channel); } if (dataRepeat > 0) // if a repeat count was specified, work on that dataRepeat--; } bool RMTChannel::addPin(byte pin, bool inverted) { if (pin == UNUSED_PIN) return true; gpio_num_t gpioNum = (gpio_num_t)(pin); esp_err_t err; PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO); err = gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT); if (err != ESP_OK) return false; gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX+channel, inverted, 0); if (err != ESP_OK) return false; return true; } bool RMTChannel::addPin(pinpair pins) { return addPin(pins.pin) && addPin(pins.invpin, true); } #endif //ESP32