/* * © 2024, Travis Farmer. All rights reserved. * © 2021 Chris Harlow * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "IO_RSproto.h" #include "defines.h" static const byte PAYLOAD_FALSE = 0; static const byte PAYLOAD_NORMAL = 1; static const byte PAYLOAD_STRING = 2; /************************************************************ * RSproto implementation ************************************************************/ // Constructor for RSproto RSproto::RSproto(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin, int cycleTime) { _serial = &serial; _baud = baud; _txPin = txPin; _busNo = busNo; _cycleTime = cycleTime; bufferLength=0; inCommandPayload=PAYLOAD_FALSE; // Add device to HAL device chain IODevice::addDevice(this); // Add bus to RSproto chain. _nextBus = _busList; _busList = this; } /* -= _loop =- // // Main loop function for RSproto. // Work through list of nodes. For each node, in separate loop entries // When the slot time has finished, move on to the next device. */ // CRC-16 implementation (replace with your preferred CRC library if needed) uint16_t RSproto::crc16(uint8_t *data, uint16_t length) { uint16_t crc = 0xFFFF; for (uint16_t i = 0; i < length; i++) { crc ^= data[i]; for (int j = 0; j < 8; j++) { bool bit = ((crc & 0x0001) != 0); crc >>= 1; if (bit) { crc ^= 0xA001; } } } return crc; } void RSproto::_loop(unsigned long currentMicros) { _currentMicros = currentMicros; //if (_busy == true) return; if (_currentMicros - _cycleStartTime < _cycleTime) return; _cycleStartTime = _currentMicros; Task currentTask = getNextTask(); if (currentTask.completed != true) { // Check if a task was found // Calculate CRC for response data if (!currentTask.rxMode) { currentTask.crcPassFail = 0; uint16_t response_crc = crc16((uint8_t*)currentTask.commandArray, currentTask.byteCount-1); if (_txPin != -1) digitalWrite(_txPin,HIGH); // Send response data with CRC _serial->write(0xFE); _serial->write(0xFE); _serial->write(response_crc >> 8); _serial->write(response_crc & 0xFF); _serial->write(currentTask.byteCount); for (int i = 0; i < currentTask.byteCount; i++) { _serial->write(currentTask.commandArray[i]); } _serial->write(0xFD); _serial->write(0xFD); _serial->flush(); if (_txPin != -1) digitalWrite(_txPin,LOW); // delete task command after sending, for now markTaskCompleted(currentTask.taskID); } if (_serial->available() && currentTask.rxMode) { uint16_t calculated_crc; int byteCount = 100; uint8_t byte_array[byteCount]; int curByte = _serial->read(); if (curByte == 0xFE && flagStart == false) flagStart = true; else if ( curByte == 0xFE && flagStart == true) { flagProc = false; byteCounter = 0; flagStarted = true; flagStart = false; flagEnded = false; rxStart = true; rxEnd = false; crcPass = false; }else if (flagStarted) { crc[0] = curByte; byteCounter++; flagStarted = false; } else if (byteCounter == 1) { crc[1] = curByte; received_crc = (crc[0] << 8) | crc[1]; byteCounter++; } else if (byteCounter == 2) { byteCount = curByte; byteCounter++; } else if (flagEnded == false && byteCounter >= 3) { received_data[byteCounter-3] = curByte; byteCounter++; } if (curByte == 0xFD && flagEnd == false) flagEnd = true; else if ( curByte == 0xFD && flagEnd == true) { flagEnded = true; flagEnd = false; rxEnd = true; byteCount = byteCounter; byteCounter = 0; } if (flagEnded) { calculated_crc = crc16((uint8_t*)received_data, byteCount-7); if (received_crc == calculated_crc) { DIAG(F("Loop CRC PASS")); crcPass = true; currentTask.crcPassFail = 1; }else { DIAG(F("Loop CRC Fail %x %x"),received_crc,calculated_crc); currentTask.crcPassFail = -1; } flagEnded = false; } // Check CRC validity if (crcPass) { // Data received successfully, process it (e.g., print) int nodeTo = received_data[0]; if (nodeTo == 0) { // for master. master does not retransmit, or a loop will runaway. flagProc = true; currentTask.gotCallback = true; } } else { //DIAG(F("IO_RSproto: CRC Error!")); } } // temp debug //end debug if (flagProc) { int nodeTo = received_data[0]; int nodeFr = received_data[1]; int AddrCode = received_data[2]; //DIAG(F("From: %i, To: %i | %i %i %i %i %i"), nodeFr,nodeTo, received_data[3], received_data[4], received_data[5], received_data[6],received_data[7]); //return; RSprotonode *node = findNode(nodeFr); switch (AddrCode) { case EXIOPINS: {node->setnumDigitalPins(received_data[3]); node->setnumAnalogPins(received_data[4]); // See if we already have suitable buffers assigned if (node->getnumDigialPins()>0) { size_t digitalBytesNeeded = (node->getnumDigialPins() + 7) / 8; if (node->getdigitalPinBytes() < digitalBytesNeeded) { // Not enough space, free any existing buffer and allocate a new one if (node->cleandigitalPinStates(digitalBytesNeeded)) { node->setdigitalPinBytes(digitalBytesNeeded); } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc %d bytes"), nodeFr, digitalBytesNeeded); //_deviceState = DEVSTATE_FAILED; node->setdigitalPinBytes(0); return; } } } if (node->getnumAnalogPins()>0) { size_t analogueBytesNeeded = node->getnumAnalogPins() * 2; if (node->getanalogPinBytes() < analogueBytesNeeded) { // Free any existing buffers and allocate new ones. if (node->cleanAnalogStates(analogueBytesNeeded)) { node->setanalogPinBytes(analogueBytesNeeded); } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc analog pin bytes"), nodeFr); //_deviceState = DEVSTATE_FAILED; node->setanalogPinBytes(0); return; } } } node->resFlag[currentTask.retFlag] = 1; break;} case EXIOINITA: { for (int i = 0; i < node->getnumAnalogPins(); i++) { node->setanalogPinMap(received_data[i+3], i); } node->resFlag[currentTask.retFlag] = 1; break; } case EXIOVER: { node->setMajVer(received_data[3]); node->setMinVer(received_data[4]); node->setPatVer(received_data[5]); DIAG(F("EX-IOExpander485: Found node %i v%i.%i.%i"),node->getNodeID(), node->getMajVer(), node->getMinVer(), node->getPatVer()); node->resFlag[currentTask.retFlag] = 1; break; } case EXIORDY: { node->resFlag[currentTask.retFlag] = 1; break; } case EXIOERR: { node->resFlag[currentTask.retFlag] = -1; break; } case EXIORDD: { for (int i = 0; i < (node->_numDigitalPins+7)/8; i++) { node->setanalogInputStates(received_data[i+3], i); } node->resFlag[currentTask.retFlag] = 1; break; } case EXIORDAN: { for (int i = 0; i < node->_numAnaloguePins; i++) { node->setanalogInputBuffer(received_data[i+3], i); } node->resFlag[currentTask.retFlag] = 1; break; } } } if (currentTask.gotCallback) { } } } // Link to chain of RSproto instances, left over from RSproto template. RSproto *RSproto::_busList = NULL; /************************************************************ * RSprotonode implementation ************************************************************/ /* -= RSprotonode =- // // Constructor for RSprotonode object */ RSprotonode::RSprotonode(VPIN firstVpin, int nPins, uint8_t nodeID) { _firstVpin = firstVpin; _nPins = nPins; _busNo = 0; _nodeID = nodeID; memset(resFlag, 0, 255); //bus = bus->findBus(0); //_serial = bus->_serialD; if (_nodeID > 252) _nodeID = 252; // cannot have a node with the frame flags if (_nodeID < 1) _nodeID = 1; // cannot have a node with the master ID // Add this device to HAL device list IODevice::addDevice(this); _display(); // Add RSprotonode to RSproto object. RSproto *bus = RSproto::findBus(_busNo); if (bus != NULL) { bus->addNode(this); return; } } bool RSprotonode::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) { if (paramCount != 1) return false; int pin = vpin - _firstVpin; uint8_t pullup = (uint8_t)params[0]; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIODPUP); buff[3] = (pin); buff[4] = (pullup); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->_busy = true; bus->addTask(bus->taskIDCntr++, buff, 5, EXIODPUP); bus->_busy = false; return true; } int RSprotonode::_configureAnalogIn(VPIN vpin) { int pin = vpin - _firstVpin; //RSproto *mainrs = RSproto::findBus(_busNo); uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOENAN); buff[3] = (pin); buff[4] = highByte(_firstVpin); buff[5] = lowByte(_firstVpin); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->_busy = true; bus->addTask(bus->taskIDCntr++, buff, 6, EXIOENAN); bus->_busy = false; return true; } void RSprotonode::_begin() { uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOINIT); buff[3] = (_nPins); buff[4] = ((_firstVpin & 0xFF)); buff[5] = ((_firstVpin >> 8)); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->_busy = true; bus->addTask(bus->taskIDCntr++, buff, 6, EXIOINIT); bus->_busy = false; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOINITA); startMillis = millis(); bus->_busy = true; bus->addTask(bus->taskIDCntr++, buff, 3, EXIOINITA); bus->_busy = false; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOVER); startMillis = millis(); bus->_busy = true; bus->addTask(bus->taskIDCntr++, buff, 3, EXIOVER); bus->_busy = false; #ifdef DIAG_IO _display(); #endif } int RSprotonode::_read(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8); return value; } void RSprotonode::_write(VPIN vpin, int value) { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOWRD); buff[3] = (pin); buff[4] = (value); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->addTask(bus->taskIDCntr++, buff, 5, EXIOWRD); } int RSprotonode::_readAnalogue(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { uint8_t _pinLSBByte = aPin * 2; uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } } return -1; // pin not found in table } void RSprotonode::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) { int pin = vpin - _firstVpin; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOWRAN); buff[3] = (pin); buff[4] = highByte(value); buff[5] = lowByte(value); buff[6] = (profile); buff[7] = highByte(duration); buff[8] = lowByte(duration); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->addTask(bus->taskIDCntr++, buff, 9, EXIOWRAN); }