/* * © 2021, Chris Harlow & David Cutting. All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* This timer class is used to manage the single timer required to handle the DCC waveform. * All timer access comes through this class so that it can be compiled for * various hardware CPU types. * * DCCEX works on a single timer interrupt at a regular 58uS interval. * The DCCWaveform class generates the signals to the motor shield * based on this timer. * * If the motor drivers are BOTH configured to use the correct 2 pins for the architecture, * (see isPWMPin() function. ) * then this allows us to use a hardware driven pin switching arrangement which is * achieved by setting the duty cycle of the NEXT clock interrupt to 0% or 100% depending on * the required pin state. (see setPWM()) * This is more accurate than the software interrupt but at the expense of * limiting the choice of available pins. * Fortunately, a standard motor shield on a Mega uses pins that qualify for PWM... * Other shields may be jumpered to PWM pins or run directly using the software interrupt. * * Because the PWM-based waveform is effectively set half a cycle after the software version, * it is not acceptable to drive the two tracks on different methiods or it would cause * problems for <1 JOIN> etc. * */ #include "DCCTimer.h" const int DCC_SIGNAL_TIME=58; // this is the 58uS DCC 1-bit waveform half-cycle const long CLOCK_CYCLES=(F_CPU / 1000000 * DCC_SIGNAL_TIME) >>1; INTERRUPT_CALLBACK interruptHandler=0; #ifdef ARDUINO_ARCH_MEGAAVR // Arduino unoWifi Rev2 and nanoEvery architectire void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); ADC0.CTRLC = (ADC0.CTRLC & 0b00110000) | 0b01000011; // speed up analogRead sample time TCB0.CTRLB = TCB_CNTMODE_INT_gc & ~TCB_CCMPEN_bm; // timer compare mode with output disabled TCB0.CTRLA = TCB_CLKSEL_CLKDIV2_gc; // 8 MHz ~ 0.125 us TCB0.CCMP = CLOCK_CYCLES -1; // 1 tick less for timer reset TCB0.INTFLAGS = TCB_CAPT_bm; // clear interrupt request flag TCB0.INTCTRL = TCB_CAPT_bm; // Enable the interrupt TCB0.CNT = 0; TCB0.CTRLA |= TCB_ENABLE_bm; // start interrupts(); } // ISR called by timer interrupt every 58uS ISR(TCB0_INT_vect){ TCB0.INTFLAGS = TCB_CAPT_bm; interruptHandler(); } bool DCCTimer::isPWMPin(byte pin) { (void) pin; return false; // TODO what are the relevant pins? } bool DCCTimer::isPWMPin(byte pin) { (void) pin; return false; // TODO what are the relevant pins? } void DCCTimer::setPWM(byte pin, bool high) { (void) pin; (void) high; // TODO what are the relevant pins? } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { memcpy(mac,(void *) &SIGROW.SERNUM0,6); // serial number mac[0] &= 0xFE; mac[0] |= 0x02; } #elif defined(TEENSYDUINO) IntervalTimer myDCCTimer; bool interruptFlipflop=false; byte railcomPin[2]={0,0]; enum RAILCOM_NEXT:byte {SKIP,CUT_OUT,CUT_IN); RAILCOM_NEXT railcom1Next[]={SKIP,SKIP}; void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; myDCCTimer.begin(interruptFast, DCC_SIGNAL_TIME/2); } // This interrupt happens every 29uS, and alternately calls the DCC waveform // or handles any pending Railcom cutout pins. void interruptFast() { nterruptFlipflop=!interruptFlipflop; if (interruptFiliflop) { interruptHandler(); return; } // Railcom interrupt, half way between DCC interruots for (byte channel=0;channel<2;channel++) { byte pin=railcomPin[channel; if (pin) { switch (railcomNext[channel]) { case CUT_OUT: digitalWrite(pin,HIGH); break; case CUT_IN: digitalWrite(pin,HIGH); break; case IGNORE: break; } railcomNext[channel]=IGNORE; } } } bool DCCTimer::isPWMPin(byte pin) { (void) pin; return true; // We are so fast we can pretend we do support this } bool DCCTimer::isRailcomPin(byte pin) { (void) pin; if (railcomPin[0]==0) railcomPin[0]=pin; else if (railcomPin[1]==0) railcomPin[1]=pin; else return false; return true; // We are so fast we can pretend we do support this } void DCCTimer::setPWM(byte pin, bool high) { // setting pwm on a railcom pin is deferred to the next railcom interruyupt. for (byte channel=0;channel<2;channel++) { if (pin==railcomPin[channel]) { railcomNext[channel]=high?CUT_OUT:CUT_IN; return; } } digitalWrite(pin,high?HIGH:LOW); } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { #if defined(__IMXRT1062__) //Teensy 4.0 and Teensy 4.1 uint32_t m1 = HW_OCOTP_MAC1; uint32_t m2 = HW_OCOTP_MAC0; mac[0] = m1 >> 8; mac[1] = m1 >> 0; mac[2] = m2 >> 24; mac[3] = m2 >> 16; mac[4] = m2 >> 8; mac[5] = m2 >> 0; #else read_mac(mac); #endif } #if !defined(__IMXRT1062__) void DCCTimer::read_mac(byte mac[6]) { read(0xe,mac,0); read(0xf,mac,3); } // http://forum.pjrc.com/threads/91-teensy-3-MAC-address void DCCTimer::read(uint8_t word, uint8_t *mac, uint8_t offset) { FTFL_FCCOB0 = 0x41; // Selects the READONCE command FTFL_FCCOB1 = word; // read the given word of read once area // launch command and wait until complete FTFL_FSTAT = FTFL_FSTAT_CCIF; while(!(FTFL_FSTAT & FTFL_FSTAT_CCIF)); *(mac+offset) = FTFL_FCCOB5; // collect only the top three bytes, *(mac+offset+1) = FTFL_FCCOB6; // in the right orientation (big endian). *(mac+offset+2) = FTFL_FCCOB7; // Skip FTFL_FCCOB4 as it's always 0. } #endif #else // Arduino nano, uno, mega etc #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #define TIMER1_A_PIN 11 #define TIMER1_B_PIN 12 #define TIMER1_C_PIN 13 //railcom timer facility #define TIMER4_A_PIN 6 #define TIMER4_B_PIN 7 #define TIMER4_C_PIN 8 #else #define TIMER1_A_PIN 9 #define TIMER1_B_PIN 10 #endif void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); ADCSRA = (ADCSRA & 0b11111000) | 0b00000100; // speed up analogRead sample time TCCR1A = 0; ICR1 = CLOCK_CYCLES; TCCR1B = _BV(WGM13) | _BV(CS10); // Mode 8, clock select 1 TIMSK1 = _BV(TOIE1); // Enable Software interrupt TCNT1 = 0; #if defined(TIMER4_A_PIN) //railcom timer facility TCCR4A = 0; ICR4 = CLOCK_CYCLES; TCCR4B = _BV(WGM43) | _BV(CS40); // Mode 8, clock select 1 TIMSK4 = 0; // Disable Software interrupt delayMicroseconds(DCC_SIGNAL_TIME/2); TCNT4 = 0; // this timer fires half cycle after Timer 1 (no idea why /4 !) #endif interrupts(); } // ISR called by timer interrupt every 58uS ISR(TIMER1_OVF_vect){ interruptHandler(); } // Alternative pin manipulation via PWM control. bool DCCTimer::isPWMPin(byte pin) { return pin==TIMER1_A_PIN || pin==TIMER1_B_PIN #ifdef TIMER1_C_PIN || pin==TIMER1_C_PIN #endif ; } // Alternative pin manipulation via PWM control. bool DCCTimer::isRailcomPin(byte pin) { return #ifdef TIMER4_A_PIN pin==TIMER4_A_PIN || pin==TIMER4_B_PIN || pin==TIMER4_C_PIN || #endif false; } void DCCTimer::setPWM(byte pin, bool high) { uint16_t val=high?1024:0; if (pin==TIMER1_A_PIN) { TCCR1A |= _BV(COM1A1); OCR1A= val; } else if (pin==TIMER1_B_PIN) { TCCR1A |= _BV(COM1B1); OCR1B= val; } #ifdef TIMER1_C_PIN else if (pin==TIMER1_C_PIN) { TCCR1A |= _BV(COM1C1); OCR1C= val; } #endif #ifdef TIMER4_A_PIN else if (pin==TIMER4_A_PIN) { TCCR4A |= _BV(COM4A1); OCR4A= val; } else if (pin==TIMER4_B_PIN) { TCCR4A |= _BV(COM4B1); OCR4B= val; } else if (pin==TIMER4_C_PIN) { TCCR4A |= _BV(COM4C1); OCR4C= val; } #endif } #include void DCCTimer::getSimulatedMacAddress(byte mac[6]) { for (byte i=0; i<6; i++) { mac[i]=boot_signature_byte_get(0x0E + i); } mac[0] &= 0xFE; mac[0] |= 0x02; } #endif