/* * © 2020, Chris Harlow. All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "StringFormatter.h" #include "DCCEXParser.h" #include "DCC.h" #include "DCCWaveform.h" #include "WifiInterface.h" #include "Turnouts.h" #include "Outputs.h" #include "Sensors.h" #include "freeMemory.h" #include "GITHUB_SHA.h" #include "version.h" #include "EEStore.h" #include "DIAG.h" // These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter. // To discover new keyword numbers , use the <$ YOURKEYWORD> command const int HASH_KEYWORD_PROG=-29718; const int HASH_KEYWORD_MAIN=11339; const int HASH_KEYWORD_JOIN=-30750; const int HASH_KEYWORD_CABS=-11981; const int HASH_KEYWORD_RAM=25982; const int HASH_KEYWORD_CMD=9962; const int HASH_KEYWORD_WIT=31594; const int HASH_KEYWORD_WIFI=-5583; const int HASH_KEYWORD_ACK=3113; const int HASH_KEYWORD_ON=2657; const int HASH_KEYWORD_DCC=6436; const int HASH_KEYWORD_SLOW=-17209; int DCCEXParser::stashP[MAX_PARAMS]; bool DCCEXParser::stashBusy; Print * DCCEXParser::stashStream=NULL; // This is a JMRI command parser, one instance per incoming stream // It doesnt know how the string got here, nor how it gets back. // It knows nothing about hardware or tracks... it just parses strings and // calls the corresponding DCC api. // Non-DCC things like turnouts, pins and sensors are handled in additional JMRI interface classes. DCCEXParser::DCCEXParser() {} void DCCEXParser::flush() { if (Diag::CMD) DIAG(F("\nBuffer flush")); bufferLength=0; inCommandPayload=false; } void DCCEXParser::loop(Stream & stream) { while(stream.available()) { if (bufferLength==MAX_BUFFER) { flush(); } char ch = stream.read(); if (ch == '<') { inCommandPayload = true; bufferLength=0; buffer[0]='\0'; } else if (ch == '>') { buffer[bufferLength]='\0'; parse( & stream, buffer, false); // Parse this allowing async responses inCommandPayload = false; break; } else if(inCommandPayload) { buffer[bufferLength++]= ch; } } } int DCCEXParser::splitValues( int result[MAX_PARAMS], const byte * cmd) { byte state=1; byte parameterCount=0; int runningValue=0; const byte * remainingCmd=cmd+1; // skips the opcode bool signNegative=false; // clear all parameters in case not enough found for (int i=0;i') return parameterCount; state=2; continue; case 2: // checking sign signNegative=false; runningValue=0; state=3; if (hot!='-') continue; signNegative=true; break; case 3: // building a parameter if (hot>='0' && hot<='9') { runningValue=10*runningValue+(hot-'0'); break; } if (hot>='A' && hot<='Z') { // Since JMRI got modified to send keywords in some rare cases, we need this // Super Kluge to turn keywords into a hash value that can be recognised later runningValue = ((runningValue << 5) + runningValue) ^ hot; break; } result[parameterCount] = runningValue * (signNegative ?-1:1); parameterCount++; state=1; continue; } remainingCmd++; } return parameterCount; } FILTER_CALLBACK DCCEXParser::filterCallback=0; void DCCEXParser::setFilter(FILTER_CALLBACK filter) { filterCallback=filter; } // See documentation on DCC class for info on this section void DCCEXParser::parse(Print * stream, byte *com, bool blocking) { if (Diag::CMD) DIAG(F("\nPARSING:%s\n"),com); (void) EEPROM; // tell compiler not to warn thi is unused int p[MAX_PARAMS]; while (com[0]=='<' || com[0]==' ') com++; // strip off any number of < or spaces byte params=splitValues(p, com); byte opcode=com[0]; if (filterCallback) filterCallback(stream,opcode,params,p); // Functions return from this switch if complete, break from switch implies error to send switch(opcode) { case '\0': return; // filterCallback asked us to ignore case 't': // THROTTLE { int cab; int tspeed; int direction; if (params==4) { // cab=p[1]; tspeed=p[2]; direction=p[3]; } else if (params==3) { // cab=p[0]; tspeed=p[1]; direction=p[2]; } else break; // Convert JMRI bizarre -1=emergency stop, 0-126 as speeds // to DCC 0=stop, 1= emergency stop, 2-127 speeds if (tspeed>126 || tspeed<-1) break; // invalid JMRI speed code if (tspeed<0) tspeed=1; // emergency stop DCC speed else if (tspeed>0) tspeed++; // map 1-126 -> 2-127 if (cab == 0 && tspeed>1) break; // ignore broadcasts of speed>1 if (direction<0 || direction>1) break; // invalid direction code DCC::setThrottle(cab,tspeed,direction); if (params==4) StringFormatter::send(stream,F(""), p[0], p[2],p[3]); else StringFormatter::send(stream,F("")); return; } case 'f': // FUNCTION if (parsef(stream,params,p)) return; break; case 'a': // ACCESSORY if(p[2] != (p[2] & 1)) return; DCC::setAccessory(p[0],p[1],p[2]==1); return; case 'T': // TURNOUT if (parseT(stream,params,p)) return; break; case 'Z': // OUTPUT if (parseZ(stream,params,p)) return; break; case 'S': // SENSOR if (parseS(stream,params,p)) return; break; case 'w': // WRITE CV on MAIN DCC::writeCVByteMain(p[0],p[1],p[2]); return; case 'b': // WRITE CV BIT ON MAIN DCC::writeCVBitMain(p[0],p[1],p[2],p[3]); return; case 'W': // WRITE CV ON PROG if (!stashCallback(stream,p)) break; DCC::writeCVByte(p[0],p[1],callback_W,blocking); return; case 'V': // VERIFY CV ON PROG if (params==2) { // if (!stashCallback(stream,p)) break; DCC::verifyCVByte(p[0],p[1],callback_Vbyte,blocking); return; } if (params==3) { if (!stashCallback(stream,p)) break; DCC::verifyCVBit(p[0],p[1],p[2],callback_Vbit,blocking); return; } break; case 'B': // WRITE CV BIT ON PROG if (!stashCallback(stream,p)) break; DCC::writeCVBit(p[0],p[1],p[2],callback_B,blocking); return; case 'R': // READ CV ON PROG if (params==3) { // if (!stashCallback(stream,p)) break; DCC::readCV(p[0],callback_R,blocking); return; } if (params==0) { // New read loco id if (!stashCallback(stream,p)) break; DCC::getLocoId(callback_Rloco,blocking); return; } break; case '1': // POWERON <1 [MAIN|PROG]> case '0': // POWEROFF <0 [MAIN | PROG] > if (params>1) break; { POWERMODE mode= opcode=='1'?POWERMODE::ON:POWERMODE::OFF; DCC::setProgTrackSyncMain(false); // Only <1 JOIN> will set this on, all others set it off if (params==0) { DCCWaveform::mainTrack.setPowerMode(mode); DCCWaveform::progTrack.setPowerMode(mode); StringFormatter::send(stream,F(""),opcode); return; } switch (p[0]) { case HASH_KEYWORD_MAIN: DCCWaveform::mainTrack.setPowerMode(mode); StringFormatter::send(stream,F(""),opcode); return; case HASH_KEYWORD_PROG: DCCWaveform::progTrack.setPowerMode(mode); StringFormatter::send(stream,F(""),opcode); return; case HASH_KEYWORD_JOIN: DCCWaveform::mainTrack.setPowerMode(mode); DCCWaveform::progTrack.setPowerMode(mode); if (mode==POWERMODE::ON) { DCC::setProgTrackSyncMain(true); StringFormatter::send(stream,F(""),opcode); } else StringFormatter::send(stream,F("")); return; } break; } return; case 'c': // READ CURRENT StringFormatter::send(stream,F(""), DCCWaveform::mainTrack.getLastCurrent()); return; case 'Q': // SENSORS Sensor::checkAll(); for(Sensor * tt=Sensor::firstSensor;tt!=NULL;tt=tt->nextSensor){ StringFormatter::send(stream,F("<%c %d>"), tt->active?'Q':'q', tt->data.snum); } return; case 's': // StringFormatter::send(stream,F(""),DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON ); StringFormatter::send(stream,F(""), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA)); // TODO Send stats of speed reminders table // TODO send status of turnouts etc etc return; case 'E': // STORE EPROM EEStore::store(); StringFormatter::send(stream,F(""), EEStore::eeStore->data.nTurnouts, EEStore::eeStore->data.nSensors, EEStore::eeStore->data.nOutputs); return; case 'e': // CLEAR EPROM EEStore::clear(); StringFormatter::send(stream, F("")); return; case ' ': // < > StringFormatter::send(stream,F("\n")); return; case 'D': // < > if (parseD(stream,params,p)) return; return; case '#': // NUMBER OF LOCOSLOTS <#> StringFormatter::send(stream,F("<# %d>"), MAX_LOCOS); return; case 'F': // New command to call the new Loco Function API if (Diag::CMD) DIAG(F("Setting loco %d F%d %S"),p[0],p[1],p[2]?F("ON"):F("OFF")); DCC::setFn(p[0],p[1],p[2]==1); return; case '+' : // Complex Wifi interface command (not usual parse) WifiInterface::ATCommand(com); return; default: //anything else will diagnose and drop out to DIAG(F("\nOpcode=%c params=%d\n"),opcode,params); for (int i=0;i StringFormatter::send(stream, F("")); } bool DCCEXParser::parseZ( Print * stream,int params, int p[]){ switch (params) { case 2: // { Output * o=Output::get(p[0]); if(o==NULL) return false; o->activate(p[1]); StringFormatter::send(stream,F(""), p[0],p[1]); } return true; case 3: // Output::create(p[0],p[1],p[2],1); return true; case 1: // return Output::remove(p[0]); case 0: // { bool gotone=false; for(Output * tt=Output::firstOutput;tt!=NULL;tt=tt->nextOutput){ gotone=true; StringFormatter::send(stream,F(""), tt->data.id, tt->data.pin, tt->data.iFlag, tt->data.oStatus); } return gotone; } default: return false; } } //=================================== bool DCCEXParser::parsef(Print * stream, int params, int p[]) { // JMRI sends this info in DCC message format but it's not exactly // convenient for other processing if (params==2) { byte groupcode=p[1] & 0xE0; if (groupcode == 0x80) { byte normalized= (p[1]<<1 & 0x1e ) | (p[1]>>4 & 0x01); funcmap(p[0],normalized,0,4); } else if (groupcode == 0xC0) { funcmap(p[0],p[1],5,8); } else if (groupcode == 0xA0) { funcmap(p[0],p[1],9,12); } } if (params==3) { if (p[1]==222) funcmap(p[0],p[2],13,20); else if (p[1]==223) funcmap(p[0],p[2],21,28); } (void)stream;// NO RESPONSE return true; } void DCCEXParser::funcmap(int cab, byte value, byte fstart, byte fstop) { for (int i=fstart;i<=fstop;i++) { DCC::setFn(cab, i, value & 1); value>>=1; } } //=================================== bool DCCEXParser::parseT(Print * stream, int params, int p[]) { switch(params){ case 0: // show all turnouts { bool gotOne=false; for(Turnout *tt=Turnout::firstTurnout;tt!=NULL;tt=tt->nextTurnout){ gotOne=true; StringFormatter::send(stream,F(""), tt->data.id, tt->data.tStatus & STATUS_ACTIVE); } return gotOne; // will if none found } case 1: // delete turnout if (!Turnout::remove(p[0])) return false; StringFormatter::send(stream,F("")); return true; case 2: // activate turnout { Turnout* tt=Turnout::get(p[0]); if (!tt) return false; tt->activate(p[1]); StringFormatter::send(stream,F(""), tt->data.id, tt->data.tStatus & STATUS_ACTIVE); } return true; case 3: // define turnout if (!Turnout::create(p[0],p[1],p[2])) return false; StringFormatter::send(stream,F("")); return true; default: return false; // will } } bool DCCEXParser::parseS( Print * stream,int params, int p[]) { switch(params){ case 3: // create sensor. pullUp indicator (0=LOW/1=HIGH) Sensor::create(p[0],p[1],p[2]); return true; case 1: // S id> remove sensor if (Sensor::remove(p[0])) return true; break; case 0: // lit sensor states for(Sensor * tt=Sensor::firstSensor;tt!=NULL;tt=tt->nextSensor){ StringFormatter::send(stream, F(""), tt->data.snum, tt->data.pin, tt->data.pullUp); } return true; default: // invalid number of arguments break; } return false; } bool DCCEXParser::parseD( Print * stream,int params, int p[]) { if (params==0) return false; bool onOff=(params>0) && (p[1]==1 || p[1]==HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off switch(p[0]){ case HASH_KEYWORD_CABS: // DCC::displayCabList(stream); return true; case HASH_KEYWORD_RAM: // StringFormatter::send(stream,F("\nFree memory=%d\n"),freeMemory()); break; case HASH_KEYWORD_ACK: // Diag::ACK=onOff; return true; case HASH_KEYWORD_CMD: // Diag::CMD=onOff; return true; case HASH_KEYWORD_WIFI: // Diag::WIFI=onOff; return true; case HASH_KEYWORD_WIT: // Diag::WITHROTTLE=onOff; return true; case HASH_KEYWORD_DCC: DCCWaveform::setDiagnosticSlowWave(params>=1 && p[1]==HASH_KEYWORD_SLOW); return true; default: // invalid/unknown break; } return false; } // CALLBACKS must be static bool DCCEXParser::stashCallback(Print * stream,int p[MAX_PARAMS]) { if (stashBusy || asyncBanned) return false; stashBusy=true; stashStream=stream; memcpy(stashP,p,MAX_PARAMS*sizeof(p[0])); return true; } void DCCEXParser::callback_W(int result) { StringFormatter::send(stashStream,F(""), stashP[2], stashP[3],stashP[0],result==1?stashP[1]:-1); stashBusy=false; } void DCCEXParser::callback_B(int result) { StringFormatter::send(stashStream,F(""), stashP[3],stashP[4], stashP[0],stashP[1],result==1?stashP[2]:-1); stashBusy=false; } void DCCEXParser::callback_Vbit(int result) { StringFormatter::send(stashStream,F(""), stashP[0], stashP[1],result); stashBusy=false; } void DCCEXParser::callback_Vbyte(int result) { StringFormatter::send(stashStream,F(""), stashP[0],result); stashBusy=false; } void DCCEXParser::callback_R(int result) { StringFormatter::send(stashStream,F(""),stashP[1],stashP[2],stashP[0],result); stashBusy=false; } void DCCEXParser::callback_Rloco(int result) { StringFormatter::send(stashStream,F(""),result); stashBusy=false; }