/* * © 2024, Chris Harlow. All rights reserved. * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see <https://www.gnu.org/licenses/>. */ /* Credit to https://github.com/dvarrel/TM1638 for the basic formulae.*/ #include <Arduino.h> #include "IODevice.h" #include "DIAG.h" const uint8_t HIGHFLASH _digits[16]={ 0b00111111,0b00000110,0b01011011,0b01001111, 0b01100110,0b01101101,0b01111101,0b00000111, 0b01111111,0b01101111,0b01110111,0b01111100, 0b00111001,0b01011110,0b01111001,0b01110001 }; // Constructor TM1638::TM1638(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin){ _firstVpin = firstVpin; _nPins = 8; _clk_pin = clk_pin; _stb_pin = stb_pin; _dio_pin = dio_pin; pinMode(clk_pin,OUTPUT); pinMode(stb_pin,OUTPUT); pinMode(dio_pin,OUTPUT); _pulse = PULSE1_16; _buttons=0; _leds=0; _lastLoop=micros(); addDevice(this); } void TM1638::create(VPIN firstVpin, byte clk_pin,byte dio_pin,byte stb_pin) { if (checkNoOverlap(firstVpin,8)) new TM1638(firstVpin, clk_pin,dio_pin,stb_pin); } void TM1638::_begin() { displayClear(); test(); _display(); } void TM1638::_loop(unsigned long currentMicros) { if (currentMicros - _lastLoop > (1000000UL/LoopHz)) { _buttons=getButtons();// Read the buttons _lastLoop=currentMicros; } } void TM1638::_display() { DIAG(F("TM1638 Configured on Vpins:%u-%u"), _firstVpin, _firstVpin+_nPins-1); } // digital read gets button state int TM1638::_read(VPIN vpin) { byte pin=vpin - _firstVpin; bool result=bitRead(_buttons,pin); // DIAG(F("TM1638 read (%d) buttons %x = %d"),pin,_buttons,result); return result; } // digital write sets led state void TM1638::_write(VPIN vpin, int value) { // TODO.. skip if no state change writeLed(vpin - _firstVpin + 1,value!=0); } // Analog write sets digit displays void TM1638::_writeAnalogue(VPIN vpin, int lowBytes, uint8_t mode, uint16_t highBytes) { // mode is in DataFormat defined above. byte formatLength=mode & 0x0F; // last 4 bits byte formatType=mode & 0xF0; // int8_t leftDigit=vpin-_firstVpin; // 0..7 from left int8_t rightDigit=leftDigit+formatLength-1; // 0..7 from left // loading is done right to left startDigit first int8_t startDigit=7-rightDigit; // reverse as 7 on left int8_t lastDigit=7-leftDigit; // reverse as 7 on left uint32_t value=highBytes; value<<=16; value |= (uint16_t)lowBytes; //DIAG(F("TM1638 fl=%d ft=%x sd=%d ld=%d v=%l vx=%X"), // formatLength,formatType,startDigit,lastDigit,value,value); while(startDigit<=lastDigit) { switch (formatType) { case _DF_DECIMAL:// decimal (leading zeros) displayDig(startDigit,GETHIGHFLASH(_digits,(value%10))); value=value/10; break; case _DF_HEX:// HEX (leading zeros) displayDig(startDigit,GETHIGHFLASH(_digits,(value & 0x0F))); value>>=4; break; case _DF_RAW:// Raw 7-segment pattern displayDig(startDigit,value & 0xFF); value>>=8; break; default: DIAG(F("TM1368 invalid mode 0x%x"),mode); return; } startDigit++; } } uint8_t TM1638::getButtons(){ ArduinoPins::fastWriteDigital(_stb_pin, LOW); writeData(INSTRUCTION_READ_KEY); pinMode(_dio_pin, INPUT); ArduinoPins::fastWriteDigital(_clk_pin, LOW); uint8_t buttons=0; for (uint8_t eachByte=0; eachByte<4;eachByte++) { uint8_t value = 0; for (uint8_t eachBit = 0; eachBit < 8; eachBit++) { ArduinoPins::fastWriteDigital(_clk_pin, HIGH); value |= ArduinoPins::fastReadDigital(_dio_pin) << eachBit; ArduinoPins::fastWriteDigital(_clk_pin, LOW); } buttons |= value << eachByte; delayMicroseconds(1); } pinMode(_dio_pin, OUTPUT); ArduinoPins::fastWriteDigital(_stb_pin, HIGH); return buttons; } void TM1638::displayDig(uint8_t digitId, uint8_t pgfedcba){ if (digitId>7) return; setDataInstruction(DISPLAY_TURN_ON | _pulse); setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_FIXED); writeDataAt(FIRST_DISPLAY_ADDRESS+14-(digitId*2), pgfedcba); } void TM1638::displayClear(){ setDataInstruction(DISPLAY_TURN_ON | _pulse); setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED); for (uint8_t i=0;i<15;i+=2){ writeDataAt(FIRST_DISPLAY_ADDRESS+i,0x00); } } void TM1638::writeLed(uint8_t num,bool state){ if ((num<1) | (num>8)) return; setDataInstruction(DISPLAY_TURN_ON | _pulse); setDataInstruction(INSTRUCTION_WRITE_DATA | INSTRUCTION_ADDRESS_FIXED); writeDataAt(FIRST_DISPLAY_ADDRESS + (num*2-1), state); } void TM1638::writeData(uint8_t data){ for (uint8_t i = 0; i < 8; i++) { ArduinoPins::fastWriteDigital(_dio_pin, data & 1); data >>= 1; ArduinoPins::fastWriteDigital(_clk_pin, HIGH); ArduinoPins::fastWriteDigital(_clk_pin, LOW); } } void TM1638::writeDataAt(uint8_t displayAddress, uint8_t data){ ArduinoPins::fastWriteDigital(_stb_pin, LOW); writeData(displayAddress); writeData(data); ArduinoPins::fastWriteDigital(_stb_pin, HIGH); delayMicroseconds(1); } void TM1638::setDataInstruction(uint8_t dataInstruction){ ArduinoPins::fastWriteDigital(_stb_pin, LOW); writeData(dataInstruction); ArduinoPins::fastWriteDigital(_stb_pin, HIGH); delayMicroseconds(1); } void TM1638::test(){ DIAG(F("TM1638 test")); uint8_t val=0; for(uint8_t i=0;i<5;i++){ setDataInstruction(DISPLAY_TURN_ON | _pulse); setDataInstruction(INSTRUCTION_WRITE_DATA| INSTRUCTION_ADDRESS_AUTO); ArduinoPins::fastWriteDigital(_stb_pin, LOW); writeData(FIRST_DISPLAY_ADDRESS); for(uint8_t i=0;i<16;i++) writeData(val); ArduinoPins::fastWriteDigital(_stb_pin, HIGH); delay(1000); val = ~val; } }