/* * © 2024, Travis Farmer. All rights reserved. * © 2024, Chris Bulliner. All rights reserved. https://github.com/CMB27 * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "IO_RS485.h" #include "defines.h" /************************************************************ * RS485 implementation ************************************************************/ // Constructor for RS485 RS485::RS485(HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, int8_t txPin, int waitA) { _baud = baud; _serialD = &serial; _txPin = txPin; _busNo = 0; _cycleTime = cycleTimeMS * 1000UL; // convert from milliseconds to microseconds. _waitA = waitA; if (_waitA < 3) _waitA = 3; // Add device to HAL device chain IODevice::addDevice(this); // Add bus to RS485 chain. _nextBus = _busList; _busList = this; } /* -= updateCrc =- // // add the CRC value from _calculateCrc (2 bytes) to the buffer. */ void RS485::updateCrc(uint8_t *buf, uint16_t len) { uint16_t crc = _calculateCrc(buf, len); buf[len] = lowByte(crc); buf[len + 1] = highByte(crc); } /* -= crcGood =- // // return TRUE if CRC matched between buffer copy, and calculated. */ bool RS485::crcGood(uint8_t *buf, uint16_t len) { uint16_t aduCrc = buf[len] | (buf[len + 1] << 8); uint16_t calculatedCrc = _calculateCrc(buf, len); if (aduCrc == calculatedCrc) return true; else return false; } /* -= calculateCrc =- // // use bitwise XOR to calculate CRC into a 16-bit byte */ uint16_t RS485::_calculateCrc(uint8_t *buf, uint16_t len) { uint16_t value = 0xFFFF; for (uint16_t i = 0; i < len; i++) { value ^= (uint16_t)buf[i]; for (uint8_t j = 0; j < 8; j++) { bool lsb = value & 1; value >>= 1; if (lsb == true) value ^= 0xA001; } } return value; } /* -= clearRxBuffer =- // // BLOCKING method to empty stray data in RX buffer */ void RS485::clearRxBuffer() { unsigned long startMicros = micros(); do { if (_serialD->available() > 0) { startMicros = micros(); _serialD->read(); } } while (micros() - startMicros < _frameTimeout); } /* -= _loop =- // // Main loop function for RS485. // Work through list of nodes. For each node, in separate loop entries // When the slot time has finished, move on to the next device. */ void RS485::_loop(unsigned long currentMicros) { _currentMicros = currentMicros; if (_currentNode == NULL) { _currentNode = _nodeListStart; } if (_currentMicros - _cycleStartTime < _cycleTime) return; _cycleStartTime = _currentMicros; if (_currentNode == NULL) return; bool flagOK = true; #if defined(RS485_STM_COMM) ArduinoPins::fastWriteDigital(RS485_STM_COMM,HIGH); #endif if (taskCnt > 0) { // run through tasks if (!waitReceive) getNextTask(taskData); switch((int) taskData[0]) { case 0: // protection for pulling empty task break; case 1: // configure pin if (taskData[4] == (int*) CONFIGURE_INPUT) { uint8_t pullup = (uint8_t) taskData[6]; uint8_t outBuffer[6] = {EXIODPUP, (uint8_t) taskData[0], (uint8_t)taskData[3], pullup}; uint8_t responseBuffer[3]; updateCrc(outBuffer,4); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(outBuffer, 6); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } waitReceive = false; uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); responseBuffer[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < 256); if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) { if (!testAndStripMasterFlag(responseBuffer)) DIAG(F("Forgen RS485 Device! no master flag from node %d"),_currentNode->getNodeID()); if (responseBuffer[0] == EXIORDY) { } else { DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), (int)taskData[3]); } } else { DIAG(F("EX-IOExpander485 node %d CRC Error"), (int) taskData[0]); flagOK = false; } } else if (taskData[3] == (int*) CONFIGURE_ANALOGINPUT) { // TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn // from IODevice class definition. Not urgent, but each virtual function defined // means increasing the RAM requirement of every HAL device driver, whether it's relevant // to the driver or not. } break; case 2: // configure analog in uint8_t commandBuffer[5] = {EXIOENAN, (uint8_t) taskData[0], (uint8_t) taskData[3]}; uint8_t responseBuffer[3]; updateCrc(commandBuffer,3); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(commandBuffer, 5); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); responseBuffer[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < 256); if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) { if (!testAndStripMasterFlag(responseBuffer)) DIAG(F("Forgen RS485 Device! no master flag from node %d"),_currentNode->getNodeID()); if (responseBuffer[0] != EXIORDY) { DIAG(F("EX-IOExpander485: Vpin %u on node %d cannot be used as an analogue input pin"), (int) taskData[3], (int) taskData[0]); } } else { DIAG(F("EX-IOExpander485 node %d CRC Error"), (int) taskData[0]); flagOK = false; } break; case 3: // write pin uint8_t digitalOutBuffer[6]; uint8_t responseBuffer[3]; digitalOutBuffer[0] = EXIOWRD; digitalOutBuffer[1] = (uint8_t) taskData[0]; digitalOutBuffer[2] = (uint8_t) taskData[3]; digitalOutBuffer[3] = (uint8_t) taskData[4]; updateCrc(digitalOutBuffer,4); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(digitalOutBuffer, 6); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); responseBuffer[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < 256); if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) { if (!testAndStripMasterFlag(responseBuffer)) DIAG(F("Forgen RS485 Device! no master flag from node %d"),_currentNode->getNodeID()); if (responseBuffer[0] != EXIORDY) { DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital output pin"), (int)taskData[3]); } } else { DIAG(F("EX-IOExpander485 node %d CRC Error"), (int) taskData[0]); flagOK = false; } break; case 4: uint8_t servoBuffer[10]; uint8_t responseBuffer[3]; #ifdef DIAG_IO DIAG(F("EX-IOExpander485 Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"), vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F("")); #endif servoBuffer[0] = EXIOWRAN; servoBuffer[1] = (uint8_t) taskData[0]; servoBuffer[2] = (uint8_t) taskData[3]; servoBuffer[3] = (uint8_t) taskData[4] & 0xFF; servoBuffer[4] = (uint8_t) taskData[4] >> 8; servoBuffer[5] = (uint8_t) taskData[5]; servoBuffer[6] = (uint8_t) taskData[6] & 0xFF; servoBuffer[7] = (uint8_t) taskData[6] >> 8; updateCrc(servoBuffer,8); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(servoBuffer, 10); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); responseBuffer[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < 256); if (!crcGood(responseBuffer,sizeof(responseBuffer)-2)) { DIAG(F("EX-IOExpander485 node %d CRC Error"), (int) taskData[0]); flagOK = false; _deviceState = DEVSTATE_FAILED; } else { if (!testAndStripMasterFlag(responseBuffer)) DIAG(F("Forgen RS485 Device! no master flag from node %d"),_currentNode->getNodeID()); if (responseBuffer[0] != EXIORDY) { DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a servo/PWM pin"), (int) taskData[3]); } } } } else { memcpy(_currentNode->_analogueInputStates, _currentNode->_analogueInputBuffer, _currentNode->_analoguePinBytes); // Copy I2C input buffer to states switch (_refreshOperation) { case 0: if (_currentNode->_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh // Issue new read request for digital states. As the request is non-blocking, the buffer has to // be allocated from heap (object state). _currentNode->_readCommandBuffer[0] = EXIORDD; _currentNode->_readCommandBuffer[1] = _currentNode->getNodeID(); updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer)); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); _currentNode->_digitalInputStates[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < (_currentNode->_numDigitalPins+7)/8); if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) { DIAG(F("EX-IOExpander485 CRC error on node %d"), _currentNode->getNodeID()); flagOK = false; } if (!testAndStripMasterFlag(_currentNode->_digitalInputStates)) DIAG(F("Forgen RS485 Device! no master flag from node %d"),_currentNode->getNodeID()); if (!waitReceive) _refreshOperation++; _lastDigitalRead = currentMicros; _readState = RDS_DIGITAL; } break; case 1: if (_currentNode->_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh // Issue new read for analogue input states _currentNode->_readCommandBuffer[0] = EXIORDAN; _currentNode->_readCommandBuffer[1] = _currentNode->getNodeID(); updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer)); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); _currentNode->_analogueInputBuffer[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < _currentNode->_numAnaloguePins * 2); if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) { DIAG(F("EX-IOExpander485 CRC error on node %d"), _currentNode->getNodeID()); flagOK = false; } if (!testAndStripMasterFlag(_currentNode->_digitalInputStates)) DIAG(F("Forgen RS485 Device! no master flag from node %d"),_currentNode->getNodeID()); if (!waitReceive) _refreshOperation = 0; _lastAnalogueRead = currentMicros; _readState = RDS_ANALOGUE; } break; } if(flagOK == true) _currentNode = _currentNode->getNext(); } #if defined(RS485_STM_OK) if (flagOK == true) { ArduinoPins::fastWriteDigital(RS485_STM_OK,HIGH); } else { ArduinoPins::fastWriteDigital(RS485_STM_OK,LOW); } #endif #if defined(RS485_STM_FAIL) if (flagOK == false) { ArduinoPins::fastWriteDigital(RS485_STM_FAIL,HIGH); } else { ArduinoPins::fastWriteDigital(RS485_STM_FAIL,LOW); } #endif #if defined(RS485_STM_COMM) ArduinoPins::fastWriteDigital(RS485_STM_COMM,LOW); #endif } // Link to chain of RS485 instances, left over from RS485 template. RS485 *RS485::_busList = NULL; /************************************************************ * RS485node implementation ************************************************************/ /* -= RS485node =- // // Constructor for RS485node object */ RS485node::RS485node(VPIN firstVpin, int nPins, uint8_t nodeID) { _firstVpin = firstVpin; _nPins = nPins; _busNo = 0; _nodeID = nodeID; if (_nodeID > 254) _nodeID = 254; // Add this device to HAL device list IODevice::addDevice(this); _display(); // Add RS485node to RS485 object. RS485 *bus = RS485::findBus(_busNo); if (bus != NULL) { bus->addNode(this); return; } }