/*
* © 2013-2016 Gregg E. Berman
* © 2020, Chris Harlow. All rights reserved.
* © 2020, Harald Barth.
*
* This file is part of Asbelos DCC API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see .
*/
#define EESTOREDEBUG
#include "defines.h"
#include "Turnouts.h"
#include "EEStore.h"
#include "StringFormatter.h"
#include "RMFT2.h"
#ifdef EESTOREDEBUG
#include "DIAG.h"
#endif
// Keywords used for turnout configuration.
const int16_t HASH_KEYWORD_SERVO=27709;
const int16_t HASH_KEYWORD_DCC=6436;
const int16_t HASH_KEYWORD_VPIN=-415;
enum unit8_t {
TURNOUT_DCC = 1,
TURNOUT_SERVO = 2,
TURNOUT_VPIN = 3,
TURNOUT_LCN = 4,
};
///////////////////////////////////////////////////////////////////////////////
// Static function to print all Turnout states to stream in form ""
void Turnout::printAll(Print *stream){
for (Turnout *tt = Turnout::firstTurnout; tt != NULL; tt = tt->nextTurnout)
StringFormatter::send(stream, F("\n"), tt->data.id, tt->data.active);
} // Turnout::printAll
///////////////////////////////////////////////////////////////////////////////
// Object method to print configuration of one Turnout to stream, in one of the following forms:
//
//
//
//
void Turnout::print(Print *stream){
uint8_t state = ((data.active) != 0);
uint8_t type = data.type;
switch (type) {
case TURNOUT_LCN:
// LCN Turnout
StringFormatter::send(stream, F("\n"), data.id, state);
break;
case TURNOUT_DCC:
// DCC Turnout
StringFormatter::send(stream, F("\n"), data.id,
(((data.dccAccessoryData.address-1) >> 2)+1), ((data.dccAccessoryData.address-1) & 3), state);
break;
case TURNOUT_VPIN:
// VPIN Digital output
StringFormatter::send(stream, F("\n"), data.id, data.vpinData.vpin, state);
break;
#ifndef IO_NO_HAL
case TURNOUT_SERVO:
// Servo Turnout
StringFormatter::send(stream, F("\n"), data.id, data.servoData.vpin,
data.servoData.activePosition, data.servoData.inactivePosition, data.servoData.profile, state);
break;
#endif
default:
break;
}
}
///////////////////////////////////////////////////////////////////////////////
// Static function to activate/deactivate Turnout with ID 'n'.
// Returns false if turnout not found.
bool Turnout::activate(int n, bool state){
#ifdef EESTOREDEBUG
DIAG(F("Turnout::activate(%d,%d)"),n,state);
#endif
Turnout * tt=get(n);
if (!tt) return false;
tt->activate(state);
turnoutlistHash++;
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Static function to check if the Turnout with ID 'n' is activated or not.
// Returns false if turnout not found.
bool Turnout::isActive(int n){
Turnout * tt=get(n);
if (!tt) return false;
return tt->isActive();
}
///////////////////////////////////////////////////////////////////////////////
// Object function to check the status of Turnout is activated or not.
bool Turnout::isActive() {
return data.active;
}
///////////////////////////////////////////////////////////////////////////////
// Object method to activate or deactivate the Turnout.
// activate is virtual here so that it can be overridden by a non-DCC turnout mechanism
void Turnout::activate(bool state) {
#ifdef EESTOREDEBUG
DIAG(F("Turnout::activate(%d)"),state);
#endif
if (data.type == TURNOUT_LCN) {
// A LCN turnout is transmitted to the LCN master.
LCN::send('T', data.id, state);
return; // The tStatus will be updated by a message from the LCN master, later.
}
data.active = state;
switch (data.type) {
case TURNOUT_DCC:
DCC::setAccessory((((data.dccAccessoryData.address-1) >> 2) + 1),
((data.dccAccessoryData.address-1) & 3), state);
break;
#ifndef IO_NO_HAL
case TURNOUT_SERVO:
IODevice::write(data.servoData.vpin, state);
break;
#endif
case TURNOUT_VPIN:
IODevice::write(data.vpinData.vpin, state);
break;
}
// Save state if stored in EEPROM
if (EEStore::eeStore->data.nTurnouts > 0 && num > 0)
EEPROM.put(num, data.tStatus);
#if defined(RMFT_ACTIVE)
RMFT2::turnoutEvent(data.id, state);
#endif
}
///////////////////////////////////////////////////////////////////////////////
// Static function to find Turnout object specified by ID 'n'. Return NULL if not found.
Turnout* Turnout::get(int n){
Turnout *tt;
for(tt=firstTurnout;tt!=NULL && tt->data.id!=n;tt=tt->nextTurnout);
return(tt);
}
///////////////////////////////////////////////////////////////////////////////
// Static function to delete Turnout object specified by ID 'n'. Return false if not found.
bool Turnout::remove(int n){
Turnout *tt,*pp=NULL;
for(tt=firstTurnout;tt!=NULL && tt->data.id!=n;pp=tt,tt=tt->nextTurnout);
if(tt==NULL) return false;
if(tt==firstTurnout)
firstTurnout=tt->nextTurnout;
else
pp->nextTurnout=tt->nextTurnout;
free(tt);
turnoutlistHash++;
return true;
}
///////////////////////////////////////////////////////////////////////////////
// Static function to load all Turnout definitions from EEPROM
// TODO: Consider transmitting the initial state of the DCC/LCN turnout here.
// (already done for servo turnouts and VPIN turnouts).
void Turnout::load(){
struct TurnoutData data;
Turnout *tt=NULL;
for(uint16_t i=0;idata.nTurnouts;i++){
// Retrieve data
EEPROM.get(EEStore::pointer(), data);
int lastKnownState = data.active;
switch (data.type) {
case TURNOUT_DCC:
tt=createDCC(data.id, ((data.dccAccessoryData.address-1)>>2)+1, (data.dccAccessoryData.address-1)&3); // DCC-based turnout
break;
case TURNOUT_LCN:
// LCN turnouts are created when the remote device sends a message.
break;
#ifndef IO_NO_HAL
case TURNOUT_SERVO:
tt=createServo(data.id, data.servoData.vpin,
data.servoData.activePosition, data.servoData.inactivePosition, data.servoData.profile, lastKnownState);
break;
#endif
case TURNOUT_VPIN:
tt=createVpin(data.id, data.vpinData.vpin, lastKnownState); // VPIN-based turnout
break;
default:
tt=NULL;
}
if (tt) tt->num = EEStore::pointer() + offsetof(TurnoutData, tStatus); // Save pointer to tStatus byte within EEPROM
// Advance by the actual size of the individual turnout struct.
EEStore::advance(data.size);
#ifdef EESTOREDEBUG
if (tt) print(tt);
#endif
}
}
///////////////////////////////////////////////////////////////////////////////
// Static function to store all Turnout definitions to EEPROM
void Turnout::store(){
Turnout *tt;
tt=firstTurnout;
EEStore::eeStore->data.nTurnouts=0;
while(tt!=NULL){
// LCN turnouts aren't saved to EEPROM
if (tt->data.type != TURNOUT_LCN) {
#ifdef EESTOREDEBUG
print(tt);
#endif
tt->num = EEStore::pointer() + offsetof(TurnoutData, tStatus); // Save pointer to tstatus byte within EEPROM
EEPROM.put(EEStore::pointer(),tt->data);
EEStore::advance(tt->data.size);
EEStore::eeStore->data.nTurnouts++;
}
tt=tt->nextTurnout;
}
}
///////////////////////////////////////////////////////////////////////////////
// Static function for creating a DCC-controlled Turnout.
Turnout *Turnout::createDCC(int id, uint16_t add, uint8_t subAdd){
if (add > 511 || subAdd > 3) return NULL;
Turnout *tt=create(id);
if (!tt) return(tt);
tt->data.type = TURNOUT_DCC;
tt->data.size = sizeof(tt->data.header) + sizeof(tt->data.dccAccessoryData);
tt->data.active = 0;
tt->data.dccAccessoryData.address = ((add-1) << 2) + subAdd + 1;
return(tt);
}
///////////////////////////////////////////////////////////////////////////////
// Static function for creating a LCN-controlled Turnout.
Turnout *Turnout::createLCN(int id, uint8_t state) {
Turnout *tt=create(id);
if (!tt) return(tt);
tt->data.type = TURNOUT_LCN;
tt->data.size = sizeof(tt->data.header) + sizeof(tt->data.lcnData);
tt->data.active = (state != 0);
return(tt);
}
///////////////////////////////////////////////////////////////////////////////
// Static function for associating a Turnout id with a virtual pin in IODevice space.
// The actual creation and configuration of the pin must be done elsewhere,
// e.g. in mySetup.cpp during startup of the CS.
Turnout *Turnout::createVpin(int id, VPIN vpin, uint8_t state){
if (vpin > VPIN_MAX) return NULL;
Turnout *tt=create(id);
if(!tt) return(tt);
tt->data.type = TURNOUT_VPIN;;
tt->data.size = sizeof(tt->data.header) + sizeof(tt->data.vpinData);
tt->data.active = (state != 0);
tt->data.vpinData.vpin = vpin;
IODevice::write(vpin, state); // Set initial state of output.
return(tt);
}
#ifndef IO_NO_HAL
///////////////////////////////////////////////////////////////////////////////
// Method for creating a Servo Turnout, e.g. connected to PCA9685 PWM device.
Turnout *Turnout::createServo(int id, VPIN vpin, uint16_t activePosition, uint16_t inactivePosition, uint8_t profile, uint8_t state){
if (activePosition > 511 || inactivePosition > 511 || profile > 4) return NULL;
Turnout *tt=create(id);
if (!tt) return(tt);
if (tt->data.type != TURNOUT_SERVO) tt->data.active = (state != 0); // Retain current state if it's an existing servo turnout.
tt->data.type = TURNOUT_SERVO;
tt->data.size = sizeof(tt->data.header) + sizeof(tt->data.servoData);
tt->data.servoData.vpin = vpin;
tt->data.servoData.activePosition = activePosition;
tt->data.servoData.inactivePosition = inactivePosition;
tt->data.servoData.profile = profile;
// Configure PWM interface device
int deviceParams[] = {(int)activePosition, (int)inactivePosition, profile, tt->data.active};
if (!IODevice::configure(vpin, IODevice::CONFIGURE_SERVO, 4, deviceParams)) {
remove(id);
return NULL;
}
return(tt);
}
#endif
///////////////////////////////////////////////////////////////////////////////
// Support for
// and
// and
Turnout *Turnout::create(int id, int params, int16_t p[]) {
#ifndef IO_NO_HAL
if (p[0] == HASH_KEYWORD_SERVO) { //
if (params == 5)
return createServo(id, (VPIN)p[1], (uint16_t)p[2], (uint16_t)p[3], (uint8_t)p[4]);
else
return NULL;
} else
#endif
if (p[0] == HASH_KEYWORD_VPIN) { //
if (params==2)
return createVpin(id, p[1]);
else
return NULL;
} else
if (p[0]==HASH_KEYWORD_DCC) {
if (params==3 && p[1]>0 && p[1]<=512 && p[2]>=0 && p[2]<4) //
return createDCC(id, p[1], p[2]);
else if (params==2 && p[1]>0 && p[1]<=512*4) //
return createDCC(id, (p[1]-1)/4+1, (p[1]-1)%4);
else
return NULL;
} else if (params==2) { // for DCC or LCN
return createDCC(id, p[0], p[1]);
}
#ifndef IO_NO_HAL
else if (params==3) { // legacy for Servo
return createServo(id, (VPIN)p[0], (uint16_t)p[1], (uint16_t)p[2]);
}
#endif
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
// Create basic Turnout object. The details of what sort of object it is
// controlling are not set here.
Turnout *Turnout::create(int id){
Turnout *tt=get(id);
if (tt==NULL) {
tt=(Turnout *)calloc(1,sizeof(Turnout));
if (!tt) return (tt);
tt->nextTurnout=firstTurnout;
firstTurnout=tt;
tt->data.id=id;
}
turnoutlistHash++;
return tt;
}
///////////////////////////////////////////////////////////////////////////////
//
// Object method to print debug info about the state of a Turnout object
//
#ifdef EESTOREDEBUG
void Turnout::print(Turnout *tt) {
tt->print(StringFormatter::diagSerial);
}
#endif
///////////////////////////////////////////////////////////////////////////////
Turnout *Turnout::firstTurnout=NULL;
int Turnout::turnoutlistHash=0; //bump on every change so clients know when to refresh their lists