/* * © 2024, Travis Farmer. All rights reserved. * © 2021 Chris Harlow * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "IO_RSproto.h" #include "defines.h" static const byte PAYLOAD_FALSE = 0; static const byte PAYLOAD_NORMAL = 1; static const byte PAYLOAD_STRING = 2; taskBuffer * taskBuffer::first=NULL; taskBuffer::taskBuffer(unsigned long taskID, uint8_t *commandBuffer, int byteCount) { _taskID = taskID; _byteCount = byteCount; memset(commandArray, 0, byteCount); memcpy(commandArray, commandBuffer, byteCount); next=first; first=this; RSproto *bus = RSproto::findBus(0); if (bus != NULL) { bus->addTask(this); return; } } taskBuffer::~taskBuffer() { // destructor } void RSproto::remove_nulls(char *str, int len) { int i, j = 0; for (i = 0; i= 0 && pos < strlen(str)) { for (int i = 0; i < strlen(str); i++) { if (i < pos) result[i] = str[i]; } } if (result != NULL) return atoi(result); else return 0; } void taskBuffer::doCommand(unsigned long taskID, uint8_t *commandBuffer, int byteCount) { // add commands here to be sent new taskBuffer(taskID, commandBuffer, byteCount); } void RSproto::parseRx(uint8_t * outArray) { int nodeFr = outArray[1]; int AddrCode = outArray[2]; DIAG(F("From: %i, To: %i"), nodeFr,outArray[0]); RSprotonode *node = findNode(nodeFr); switch (AddrCode) { case EXIOPINS: {node->_numDigitalPins = outArray[3]; node->_numAnaloguePins = outArray[4]; // See if we already have suitable buffers assigned if (node->_numDigitalPins>0) { size_t digitalBytesNeeded = (node->_numDigitalPins + 7) / 8; if (node->_digitalPinBytes < digitalBytesNeeded) { // Not enough space, free any existing buffer and allocate a new one if (node->_digitalPinBytes > 0) free(node->_digitalInputStates); if ((node->_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) { node->_digitalPinBytes = digitalBytesNeeded; } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc %d bytes"), nodeFr, digitalBytesNeeded); //_deviceState = DEVSTATE_FAILED; node->_digitalPinBytes = 0; return; } } } if (node->_numAnaloguePins>0) { size_t analogueBytesNeeded = node->_numAnaloguePins * 2; if (node->_analoguePinBytes < analogueBytesNeeded) { // Free any existing buffers and allocate new ones. if (node->_analoguePinBytes > 0) { free(node->_analogueInputBuffer); free(node->_analogueInputStates); free(node->_analoguePinMap); } node->_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1); node->_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1); node->_analoguePinMap = (uint8_t*) calloc(node->_numAnaloguePins, 1); if (node->_analogueInputStates != NULL && node->_analogueInputBuffer != NULL && node->_analoguePinMap != NULL) { node->_analoguePinBytes = analogueBytesNeeded; } else { DIAG(F("EX-IOExpander485 node:%d ERROR alloc analog pin bytes"), nodeFr); //_deviceState = DEVSTATE_FAILED; node->_analoguePinBytes = 0; return; } } } node->resFlag = 1; break;} case EXIOINITA: { for (int i = 0; i < node->_numAnaloguePins; i++) { node->_analoguePinMap[i] = outArray[i+3]; } node->resFlag = 1; break; } case EXIOVER: { node->_majorVer = outArray[3]; node->_minorVer = outArray[4]; node->_patchVer = outArray[5]; node->resFlag = 1; break; } case EXIORDY: { node->resFlag = 1; break; } case EXIOERR: { node->resFlag = -1; break; } case EXIORDD: { for (int i = 0; i < (node->_numDigitalPins+7)/8; i++) { node->_digitalInputStates[i] = outArray[i+3]; } node->resFlag = 1; break; } case EXIORDAN: { for (int i = 0; i < node->_numAnaloguePins; i++) { node->_analogueInputBuffer[i] = outArray[i+3]; } node->resFlag = 1; break; } } } /************************************************************ * RSproto implementation ************************************************************/ // Constructor for RSproto RSproto::RSproto(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin, int cycleTime) { _serial = &serial; _baud = baud; _txPin = txPin; _busNo = busNo; _cycleTime = cycleTime; bufferLength=0; inCommandPayload=PAYLOAD_FALSE; // Add device to HAL device chain IODevice::addDevice(this); // Add bus to RSproto chain. _nextBus = _busList; _busList = this; } /* -= _loop =- // // Main loop function for RSproto. // Work through list of nodes. For each node, in separate loop entries // When the slot time has finished, move on to the next device. */ // CRC-16 implementation (replace with your preferred CRC library if needed) uint16_t RSproto::crc16(uint8_t *data, uint16_t length) { uint16_t crc = 0xFFFF; for (uint16_t i = 0; i < length; i++) { crc ^= data[i]; for (int j = 0; j < 8; j++) { bool bit = ((crc & 0x0001) != 0); crc >>= 1; if (bit) { crc ^= 0xA001; } } } return crc; } void RSproto::sendInstantCommand(uint8_t *buf, int byteCount) { // Calculate CRC for response data uint16_t response_crc = crc16((uint8_t*)buf, byteCount-1); if (_txPin != -1) digitalWrite(_txPin,HIGH); // Send response data with CRC _serial->write(0xFE); _serial->write(0xFE); _serial->write(response_crc >> 8); _serial->write(response_crc & 0xFF); _serial->write(byteCount); for (int i = 0; i < byteCount; i++) { _serial->write(buf[i]); } _serial->write(0xFD); _serial->write(0xFD); _serial->flush(); if (_txPin != -1) digitalWrite(_txPin,LOW); // delete task command after sending, for now //int received_data[ARRAY_SIZE]; uint16_t received_crc; while(_serial->available()) { if (_serial->available()) { uint8_t received_data[ARRAY_SIZE]; uint16_t calculated_crc; int byteCount = 100; int curByte = _serial->read(); if (curByte == 0xFE && flagStart == false) flagStart = true; else if ( curByte == 0xFE && flagStart == true) { byteCounter = 0; flagStarted = true; flagStart = false; flagEnded = false; rxStart = true; rxEnd = false; crcPass = false; }else if (flagStarted) { crc[0] = curByte; byteCounter++; flagStarted = false; } else if (byteCounter == 1) { crc[1] = curByte; received_crc = (crc[0] << 8) | crc[1]; byteCounter++; } else if (byteCounter == 2) { byteCount = curByte; byteCounter++; } else if (flagEnded == false && byteCounter >= 3) { received_data[byteCounter-3] = curByte; byteCounter++; } if (curByte == 0xFD && flagEnd == false) flagEnd = true; else if ( curByte == 0xFD && flagEnd == true) { flagEnded = true; flagEnd = false; rxEnd = true; byteCount = byteCounter; byteCounter = 0; } if (flagEnded) { calculated_crc = crc16((uint8_t*)received_data, byteCount-6); if (received_crc == calculated_crc) { crcPass = true; DIAG(F("CRC PASS")); } flagEnded = false; } // Check CRC validity if (crcPass) { // Data received successfully, process it (e.g., print) int nodeTo = (received_data[1] << 8) | received_data[0]; if (nodeTo == 0) { // for master. master does not retransmit, or a loop will runaway. parseRx(received_data); } } else { //DIAG(F("IO_RSproto: CRC Error!")); } } } } void RSproto::_loop(unsigned long currentMicros) { _currentMicros = currentMicros; if (_busy == true) return; if (_currentTask == NULL) { _currentTask = _taskListStart; } if (_currentMicros - _cycleStartTime < _cycleTime) return; _cycleStartTime = _currentMicros; if (_currentTask != NULL && _currentTask->_byteCount > 0) { // Calculate CRC for response data uint16_t response_crc = crc16((uint8_t*)_currentTask->commandArray, _currentTask->_byteCount-6); if (_txPin != -1) digitalWrite(_txPin,HIGH); // Send response data with CRC _serial->write(0xFE); _serial->write(0xFE); _serial->write(response_crc >> 8); _serial->write(response_crc & 0xFF); _serial->write(_currentTask->_byteCount); for (int i = 0; i < _currentTask->_byteCount; i++) { _serial->write(_currentTask->commandArray[i]); } _serial->write(0xFD); _serial->write(0xFD); _serial->flush(); if (_txPin != -1) digitalWrite(_txPin,LOW); // delete task command after sending, for now memset(_currentTask->commandArray, 0, _currentTask->_byteCount); _currentTask->_byteCount = 0; } if (_serial->available()) { uint8_t received_data[ARRAY_SIZE]; uint16_t calculated_crc; int byteCount = 100; uint8_t byte_array[byteCount]; int curByte = _serial->read(); if (curByte == 0xFE && flagStart == false) flagStart = true; else if ( curByte == 0xFE && flagStart == true) { byteCounter = 0; flagStarted = true; flagStart = false; flagEnded = false; rxStart = true; rxEnd = false; crcPass = false; }else if (flagStarted) { crc[0] = curByte; byteCounter++; flagStarted = false; } else if (byteCounter == 1) { crc[1] = curByte; received_crc = (crc[0] << 8) | crc[1]; byteCounter++; } else if (byteCounter == 2) { byteCount = curByte; byteCounter++; } else if (flagEnded == false && byteCounter >= 3) { received_data[byteCounter-3] = curByte; byteCounter++; } if (curByte == 0xFD && flagEnd == false) flagEnd = true; else if ( curByte == 0xFD && flagEnd == true) { flagEnded = true; flagEnd = false; rxEnd = true; byteCount = byteCounter; byteCounter = 0; } if (flagEnded) { calculated_crc = crc16((uint8_t*)received_data, byteCount-6); if (received_crc == calculated_crc) { DIAG(F("CRC PASS")); crcPass = true; }else DIAG(F("CRC Fail %x %x"),received_crc,calculated_crc); flagEnded = false; } // Check CRC validity if (crcPass) { // Data received successfully, process it (e.g., print) int nodeTo = received_data[0]; if (nodeTo == 0) { // for master. master does not retransmit, or a loop will runaway. parseRx(received_data); } } else { //DIAG(F("IO_RSproto: CRC Error!")); } } task->getNext(); } // Link to chain of RSproto instances, left over from RSproto template. RSproto *RSproto::_busList = NULL; /************************************************************ * RSprotonode implementation ************************************************************/ /* -= RSprotonode =- // // Constructor for RSprotonode object */ RSprotonode::RSprotonode(VPIN firstVpin, int nPins, uint8_t nodeID) { _firstVpin = firstVpin; _nPins = nPins; _busNo = 0; _nodeID = nodeID; //bus = bus->findBus(0); //_serial = bus->_serialD; if (_nodeID > 252) _nodeID = 252; // cannot have a node with the frame flags if (_nodeID < 1) _nodeID = 1; // cannot have a node with the master ID // Add this device to HAL device list IODevice::addDevice(this); _display(); // Add RSprotonode to RSproto object. RSproto *bus = RSproto::findBus(_busNo); if (bus != NULL) { bus->addNode(this); return; } } bool RSprotonode::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) { if (paramCount != 1) return false; int pin = vpin - _firstVpin; uint8_t pullup = (uint8_t)params[0]; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIODPUP); buff[3] = (pin); buff[4] = (pullup); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->_busy = true; bus->sendInstantCommand(buff, 5); bus->_busy = false; while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin); return false; } resFlag = 0; return true; } int RSprotonode::_configureAnalogIn(VPIN vpin) { int pin = vpin - _firstVpin; //RSproto *mainrs = RSproto::findBus(_busNo); uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOENAN); buff[3] = (pin); buff[4] = highByte(_firstVpin); buff[5] = lowByte(_firstVpin); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->_busy = true; bus->sendInstantCommand(buff, 6); bus->_busy = false; while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin); return false; } resFlag = 0; return true; } void RSprotonode::_begin() { uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOINIT); buff[3] = (_nPins); buff[4] = ((_firstVpin & 0xFF)); buff[5] = ((_firstVpin >> 8)); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); bus->_busy = true; bus->sendInstantCommand(buff, 6); bus->_busy = false; while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINIT"), _nodeID); } resFlag = 0; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOINITA); startMillis = millis(); bus->_busy = true; bus->sendInstantCommand(buff,3); bus->_busy = false; while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINITA"), _nodeID); } resFlag = 0; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOVER); startMillis = millis(); bus->_busy = true; bus->sendInstantCommand(buff,3); bus->_busy = false; while (resFlag == 0 && millis() - startMillis < 1000); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID); } else DIAG(F("EX-IOExpander device found, Node:%d, Version v%d.%d.%d"), _nodeID, _majorVer, _minorVer, _patchVer); resFlag = 0; #ifdef DIAG_IO _display(); #endif } int RSprotonode::_read(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; uint8_t pinByte = pin / 8; bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8); return value; } void RSprotonode::_write(VPIN vpin, int value) { if (_deviceState == DEVSTATE_FAILED) return; int pin = vpin - _firstVpin; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOWRD); buff[3] = (pin); buff[4] = (value); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); task->doCommand(bus->taskCounter++, buff,5); while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID); } resFlag = 0; } int RSprotonode::_readAnalogue(VPIN vpin) { if (_deviceState == DEVSTATE_FAILED) return 0; int pin = vpin - _firstVpin; for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) { if (_analoguePinMap[aPin] == pin) { uint8_t _pinLSBByte = aPin * 2; uint8_t _pinMSBByte = _pinLSBByte + 1; return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte]; } } return -1; // pin not found in table } void RSprotonode::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) { int pin = vpin - _firstVpin; uint8_t buff[ARRAY_SIZE]; buff[0] = (_nodeID); buff[1] = (0); buff[2] = (EXIOWRAN); buff[3] = (pin); buff[4] = highByte(value); buff[5] = lowByte(value); buff[6] = (profile); buff[7] = highByte(duration); buff[8] = lowByte(duration); unsigned long startMillis = millis(); RSproto *bus = RSproto::findBus(0); task->doCommand(bus->taskCounter++, buff,9); while (resFlag == 0 && millis() - startMillis < 500); // blocking for now if (resFlag != 1) { DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID); } resFlag = 0; }