/* * @ 2023 Travis Farmer * © 2023 Neil McKechnie * © 2022-2023 Paul M. Antoine * © 2021 Mike S * © 2021, 2023 Harald Barth * © 2021 Fred Decker * © 2021 Chris Harlow * © 2021 David Cutting * All rights reserved. * * This file is part of Asbelos DCC API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ // ATTENTION: this file only compiles on a STM32 based boards // Please refer to DCCTimer.h for general comments about how this class works // This is to avoid repetition and duplication. #if defined(ARDUINO_GIGA) #include "DCCTimer.h" #include "DIAG.h" #include "Portenta_H7_TimerInterrupt.h" /////////////////////////////////////////////////////////////////////////////////////////////// // Experimental code for High Accuracy (HA) DCC Signal mode // Warning - use of TIM2 and TIM3 can affect the use of analogWrite() function on certain pins, // which is used by the DC motor types. /////////////////////////////////////////////////////////////////////////////////////////////// /*INTERRUPT_CALLBACK interruptHandler=0; // // Let's use STM32's timer #2 which supports hardware pulse generation on pin D13. // // Also, timer #3 will do hardware pulses on pin D12. This gives // // accurate timing, independent of the latency of interrupt handling. // // We only need to interrupt on one of these (TIM2), the other will just generate // // pulses. HardwareTimer timer(TIM1); HardwareTimer timerAux(TIM3); static bool tim2ModeHA = false; static bool tim3ModeHA = false; // Timer IRQ handler void Timer_Handler() { interruptHandler(); } void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); // adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES); timer.pause(); timerAux.pause(); timer.setPrescaleFactor(1); timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); timer.attachInterrupt(Timer_Handler); timer.refresh(); timerAux.setPrescaleFactor(1); timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); timerAux.refresh(); timer.resume(); timerAux.resume(); interrupts(); } bool DCCTimer::isPWMPin(byte pin) { // Timer 2 Channel 1 controls pin D13, and Timer3 Channel 1 controls D12. // Enable the appropriate timer channel. switch (pin) { case 12: return true; case 13: return true; default: return false; } } void DCCTimer::setPWM(byte pin, bool high) { // Set the timer so that, at the next counter overflow, the requested // pin state is activated automatically before the interrupt code runs. // TIM2 is timer, TIM3 is timerAux. switch (pin) { case 12: if (!tim3ModeHA) { timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D12); tim3ModeHA = true; } if (high) TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; else TIM3->CCMR1 = (TIM3->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; break; case 13: if (!tim2ModeHA) { timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, D13); tim2ModeHA = true; } if (high) TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; else TIM2->CCMR1 = (TIM2->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; break; } } void DCCTimer::clearPWM() { timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); tim2ModeHA = false; timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); tim3ModeHA = false; }*/ /////////////////////////////////////////////////////////////////////////////////////////////// /*INTERRUPT_CALLBACK interruptHandler=0; extern char *__brkval; extern char *__malloc_heap_start; void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); ADC0.CTRLC = (ADC0.CTRLC & 0b00110000) | 0b01000011; // speed up analogRead sample time TCB0.CTRLB = TCB_CNTMODE_INT_gc & ~TCB_CCMPEN_bm; // timer compare mode with output disabled TCB0.CTRLA = TCB_CLKSEL_CLKDIV2_gc; // 8 MHz ~ 0.125 us TCB0.CCMP = CLOCK_CYCLES -1; // 1 tick less for timer reset TCB0.INTFLAGS = TCB_CAPT_bm; // clear interrupt request flag TCB0.INTCTRL = TCB_CAPT_bm; // Enable the interrupt TCB0.CNT = 0; TCB0.CTRLA |= TCB_ENABLE_bm; // start interrupts(); } // ISR called by timer interrupt every 58uS ISR(TCB0_INT_vect){ TCB0.INTFLAGS = TCB_CAPT_bm; // Clear interrupt request flag interruptHandler(); } bool DCCTimer::isPWMPin(byte pin) { (void) pin; return false; // TODO what are the relevant pins? } void DCCTimer::setPWM(byte pin, bool high) { (void) pin; (void) high; // TODO what are the relevant pins? } void DCCTimer::clearPWM() { // Do nothing unless we implent HA } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { memcpy(mac,(void *) &SIGROW.SERNUM0,6); // serial number mac[0] &= 0xFE; mac[0] |= 0x02; } volatile int DCCTimer::minimum_free_memory=__INT_MAX__; // Return low memory value... int DCCTimer::getMinimumFreeMemory() { noInterrupts(); // Disable interrupts to get volatile value int retval = minimum_free_memory; interrupts(); return retval; } extern char *__brkval; extern char *__malloc_heap_start; int DCCTimer::freeMemory() { char top; return __brkval ? &top - __brkval : &top - __malloc_heap_start; } void DCCTimer::reset() { CPU_CCP=0xD8; WDT.CTRLA=0x4; while(true){} }*/ INTERRUPT_CALLBACK interruptHandler=0; //HardwareTimer* timer = NULL; //HardwareTimer* timerAux = NULL; HardwareTimer timer(TIM2); HardwareTimer timerAux(TIM3); static bool tim2ModeHA = false; static bool tim3ModeHA = false; void DCCTimer_Handler() __attribute__((interrupt)); void DCCTimer_Handler() { interruptHandler(); } void DCCTimer::begin(INTERRUPT_CALLBACK callback) { interruptHandler=callback; noInterrupts(); // adc_set_sample_rate(ADC_SAMPLETIME_480CYCLES); timer.pause(); timerAux.pause(); timer.setPrescaleFactor(1); timer.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); timer.attachInterrupt(DCCTimer_Handler); timer.refresh(); timerAux.setPrescaleFactor(1); timerAux.setOverflow(DCC_SIGNAL_TIME, MICROSEC_FORMAT); timerAux.refresh(); timer.resume(); timerAux.resume(); interrupts(); } bool DCCTimer::isPWMPin(byte pin) { switch (pin) { case 12: return true; case 13: return true; default: return false; } } void DCCTimer::setPWM(byte pin, bool high) { switch (pin) { case 9: if (!tim3ModeHA) { timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 9); tim3ModeHA = true; } if (high) TIM17->CCMR1 = (TIM17->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; else TIM17->CCMR1 = (TIM17->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; break; case 8: if (!tim2ModeHA) { timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, 8); tim2ModeHA = true; } if (high) TIM16->CCMR1 = (TIM16->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_0; else TIM16->CCMR1 = (TIM16->CCMR1 & ~TIM_CCMR1_OC1M_Msk) | TIM_CCMR1_OC1M_1; break; } } void DCCTimer::clearPWM() { timer.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); tim2ModeHA = false; timerAux.setMode(1, TIMER_OUTPUT_COMPARE_INACTIVE, NC); tim3ModeHA = false; } void DCCTimer::getSimulatedMacAddress(byte mac[6]) { volatile uint32_t *serno1 = (volatile uint32_t *)0x1FFF7A10; volatile uint32_t *serno2 = (volatile uint32_t *)0x1FFF7A14; // volatile uint32_t *serno3 = (volatile uint32_t *)0x1FFF7A18; volatile uint32_t m1 = *serno1; volatile uint32_t m2 = *serno2; mac[0] = m1 >> 8; mac[1] = m1 >> 0; mac[2] = m2 >> 24; mac[3] = m2 >> 16; mac[4] = m2 >> 8; mac[5] = m2 >> 0; } volatile int DCCTimer::minimum_free_memory=__INT_MAX__; // Return low memory value... int DCCTimer::getMinimumFreeMemory() { noInterrupts(); // Disable interrupts to get volatile value int retval = freeMemory(); interrupts(); return retval; } extern "C" char* sbrk(int incr); int DCCTimer::freeMemory() { char top; unsigned int tmp = (unsigned int)(&top - reinterpret_cast(sbrk(0))); return (int)(tmp / 1000); } void DCCTimer::reset() { //Watchdog &watchdog = Watchdog::get_instance(); //Watchdog::stop(); //Watchdog::start(500); //while(true) {}; } int16_t ADCee::ADCmax() { return 4095; } int ADCee::init(uint8_t pin) { return analogRead(pin); } /* * Read function ADCee::read(pin) to get value instead of analogRead(pin) */ int ADCee::read(uint8_t pin, bool fromISR) { int current; if (!fromISR) noInterrupts(); current = analogRead(pin); if (!fromISR) interrupts(); return current; } /* * Scan function that is called from interrupt */ //#pragma GCC push_options //#pragma GCC optimize ("-O3") void ADCee::scan() { } //#pragma GCC pop_options void ADCee::begin() { noInterrupts(); interrupts(); } #endif