/* * © 2021-2024, Harald Barth. * * This file is part of DCC-EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * RMT has "channels" which us FIFO RAM where you place what you want to send * or receive. Channels can be merged to get more words per channel. * * WROOM: 8 channels total of 512 words, 64 words per channel. We use currently * channel 0+1 for 128 words for DCC MAIN and 2+3 for DCC PROG. * * S3: 8 channels total of 384 words. 4 channels dedicated for TX and 4 channels * dedicated for RX. 48 words per channel. So for TX there are 4 channels and we * could use them with 96 words for MAIN and PROG if DCC data does fit in there. * * C3: 4 channels total of 192 words. As we do not use RX we can use all for TX * so the situation is the same as for the -S3 * * C6, H2: 4 channels total of 192 words. 2 channels dedictaed for TX and * 2 channels dedicated for RX. Half RMT capacity compared to the C3. * */ #if defined(ARDUINO_ARCH_ESP32) #include "defines.h" #include "DIAG.h" #include "DCCRMT.h" #include "DCCTimer.h" #include "DCCWaveform.h" // for MAX_PACKET_SIZE #include "soc/gpio_sig_map.h" // check for right type of ESP32 #include "soc/soc_caps.h" #ifndef SOC_RMT_MEM_WORDS_PER_CHANNEL #error This symobol should be defined #endif #if SOC_RMT_MEM_WORDS_PER_CHANNEL < 64 #warning This is not an ESP32-WROOM but some other unsupported variant #warning You are outside of the DCC-EX supported hardware #endif static const byte RMT_CHAN_PER_DCC_CHAN = 2; // Number of bits resulting out of X bytes of DCC payload data // Each byte has one bit extra and at the end we have one EOF marker #define DATA_LEN(X) ((X)*9+1) #if ESP_IDF_VERSION < ESP_IDF_VERSION_VAL(4,2,0) #error wrong IDF version #endif void setDCCBit1(rmt_item32_t* item) { item->level0 = 1; item->duration0 = DCC_1_HALFPERIOD; item->level1 = 0; item->duration1 = DCC_1_HALFPERIOD; } void setDCCBit0(rmt_item32_t* item) { item->level0 = 1; item->duration0 = DCC_0_HALFPERIOD; item->level1 = 0; item->duration1 = DCC_0_HALFPERIOD; } // special long zero to trigger scope void setDCCBit0Long(rmt_item32_t* item) { item->level0 = 1; item->duration0 = DCC_0_HALFPERIOD + DCC_0_HALFPERIOD/10; item->level1 = 0; item->duration1 = DCC_0_HALFPERIOD + DCC_0_HALFPERIOD/10; } void setEOT(rmt_item32_t* item) { item->val = 0; } // This is an array that contains the this pointers // to all uses channel objects. This is used to determine // which of the channels was triggering the ISR as there // is only ONE common ISR routine for all channels. RMTChannel *channelHandle[8] = { 0 }; void IRAM_ATTR interrupt(rmt_channel_t channel, void *t) { RMTChannel *tt = channelHandle[channel]; if (tt) tt->RMTinterrupt(); if (channel == 0) DCCTimer::updateMinimumFreeMemoryISR(0); } RMTChannel::RMTChannel(Pinpair pins, bool isMain) { byte ch; byte plen; // Below we check if the DCC packet actually fits into the RMT hardware // Currently MAX_PACKET_SIZE = 5 so with checksum there are // MAX_PACKET_SIZE+1 data packets. Each need DATA_LEN (9) bits. // To that we add the preamble length, the fencepost DCC end bit // and the RMT EOF marker. // SOC_RMT_MEM_WORDS_PER_CHANNEL is either 64 (original WROOM) or // 48 (all other ESP32 like the -C3 or -S2 // The formula to get the possible MAX_PACKET_SIZE is // // ALLOCATED = RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL // MAX_PACKET_SIZE = floor((ALLOCATED - PREAMBLE_LEN - 2)/9 - 1) // if (isMain) { ch = 0; plen = PREAMBLE_BITS_MAIN; static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_MAIN + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL, "Number of DCC packet bits greater than ESP32 RMT memory available"); } else { ch = RMT_CHAN_PER_DCC_CHAN; // number == offset plen = PREAMBLE_BITS_PROG; static_assert (DATA_LEN(MAX_PACKET_SIZE+1) + PREAMBLE_BITS_PROG + 2 <= RMT_CHAN_PER_DCC_CHAN * SOC_RMT_MEM_WORDS_PER_CHANNEL, "Number of DCC packet bits greater than ESP32 RMT memory available"); } // preamble preambleLen = plen+2; // plen 1 bits, one 0 bit and one EOF marker preamble = (rmt_item32_t*)malloc(preambleLen*sizeof(rmt_item32_t)); for (byte n=0; n 0) // we have still old work to do return dataRepeat; if (dataReady == true) // the packet is not copied out yet return 1000; if (DATA_LEN(byteCount) > maxDataLen) { // this would overun our allocated memory for data DIAG(F("Can not convert DCC bytes # %d to DCC bits %d, buffer too small"), byteCount, maxDataLen); return -1; // something very broken, can not convert packet } // convert bytes to RMT stream of "bits" byte bitcounter = 0; for(byte n=0; n 0) // if a repeat count was specified, work on that dataRepeat--; } bool RMTChannel::addPin(byte pin, bool inverted) { if (pin == UNUSED_PIN) return true; gpio_num_t gpioNum = (gpio_num_t)(pin); esp_err_t err; PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpioNum], PIN_FUNC_GPIO); err = gpio_set_direction(gpioNum, GPIO_MODE_OUTPUT); if (err != ESP_OK) return false; gpio_matrix_out(gpioNum, RMT_SIG_OUT0_IDX+channel, inverted, 0); if (err != ESP_OK) return false; return true; } bool RMTChannel::addPin(Pinpair pins) { return addPin(pins.pin) && addPin(pins.invpin, true); } #endif //ESP32