/* * © 2024, Travis Farmer. All rights reserved. * © 2024, Chris Bulliner. All rights reserved. https://github.com/CMB27 * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "IO_RSproto.h" #include "defines.h" /************************************************************ * RSproto implementation ************************************************************/ // Constructor for RSproto RSproto::RSproto(HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, int8_t txPin, int waitA) { _baud = baud; _serialD = &serial; _txPin = txPin; _busNo = 0; _cycleTime = cycleTimeMS * 1000UL; // convert from milliseconds to microseconds. _waitA = waitA; if (_waitA < 3) _waitA = 3; // Add device to HAL device chain IODevice::addDevice(this); // Add bus to RSproto chain. _nextBus = _busList; _busList = this; } /* -= updateCrc =- // // add the CRC value from _calculateCrc (2 bytes) to the buffer. */ void RSproto::updateCrc(uint8_t *buf, uint16_t len) { uint16_t crc = _calculateCrc(buf, len); buf[len] = lowByte(crc); buf[len + 1] = highByte(crc); } /* -= crcGood =- // // return TRUE if CRC matched between buffer copy, and calculated. */ bool RSproto::crcGood(uint8_t *buf, uint16_t len) { uint16_t aduCrc = buf[len] | (buf[len + 1] << 8); uint16_t calculatedCrc = _calculateCrc(buf, len); if (aduCrc == calculatedCrc) return true; else return false; } /* -= calculateCrc =- // // use bitwise XOR to calculate CRC into a 16-bit byte */ uint16_t RSproto::_calculateCrc(uint8_t *buf, uint16_t len) { uint16_t value = 0xFFFF; for (uint16_t i = 0; i < len; i++) { value ^= (uint16_t)buf[i]; for (uint8_t j = 0; j < 8; j++) { bool lsb = value & 1; value >>= 1; if (lsb == true) value ^= 0xA001; } } return value; } /* -= clearRxBuffer =- // // BLOCKING method to empty stray data in RX buffer */ void RSproto::clearRxBuffer() { unsigned long startMicros = micros(); do { if (_serialD->available() > 0) { startMicros = micros(); _serialD->read(); } } while (micros() - startMicros < _frameTimeout); } /* -= _loop =- // // Main loop function for RSproto. // Work through list of nodes. For each node, in separate loop entries // When the slot time has finished, move on to the next device. */ void RSproto::_loop(unsigned long currentMicros) { _currentMicros = currentMicros; if (_currentNode == NULL) { _currentNode = _nodeListStart; } if (_currentMicros - _cycleStartTime < _cycleTime) return; _cycleStartTime = _currentMicros; if (_currentNode == NULL) return; bool flagOK = true; #if defined(RSproto_STM_COMM) ArduinoPins::fastWriteDigital(RSproto_STM_COMM,HIGH); #endif if (!_busy) { memcpy(_currentNode->_analogueInputStates, _currentNode->_analogueInputBuffer, _currentNode->_analoguePinBytes); // Copy I2C input buffer to states switch (_refreshOperation) { case 0: if (_currentNode->_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh // Issue new read request for digital states. As the request is non-blocking, the buffer has to // be allocated from heap (object state). _currentNode->_readCommandBuffer[0] = EXIORDD; _currentNode->_readCommandBuffer[1] = _currentNode->getNodeID(); updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer)); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); _currentNode->_digitalInputStates[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < (_currentNode->_numDigitalPins+7)/8); if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) { DIAG(F("EX-IOExpander485 CRC error on node %d"), _currentNode->getNodeID()); flagOK = false; } if (!testAndStripMasterFlag(_currentNode->_digitalInputStates)) DIAG(F("Foreign RSproto Device! no master flag from node %d"),_currentNode->getNodeID()); if (!waitReceive) _refreshOperation++; _lastDigitalRead = currentMicros; _readState = RDS_DIGITAL; } break; case 1: if (_currentNode->_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh // Issue new read for analogue input states _currentNode->_readCommandBuffer[0] = EXIORDAN; _currentNode->_readCommandBuffer[1] = _currentNode->getNodeID(); updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2); if (waitReceive == false) { if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH); _serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer)); _serialD->flush(); if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW); } unsigned long startMillis = millis(); if (!_serialD->available()) { if (waitReceive == true && _waitCounter > _waitA) { flagOK = false; } else waitReceive = true; } uint16_t len = 0; unsigned long startMicros = micros(); do { if (_serialD->available()) { startMicros = micros(); _currentNode->_analogueInputBuffer[len] = _serialD->read(); len++; } } while (micros() - startMicros <= 500 && len < _currentNode->_numAnaloguePins * 2); if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) { DIAG(F("EX-IOExpander485 CRC error on node %d"), _currentNode->getNodeID()); flagOK = false; } if (!testAndStripMasterFlag(_currentNode->_digitalInputStates)) DIAG(F("Foreign RSproto Device! no master flag from node %d"),_currentNode->getNodeID()); if (!waitReceive) _refreshOperation = 0; _lastAnalogueRead = currentMicros; _readState = RDS_ANALOGUE; } break; if(flagOK && !waitReceive) _currentNode = _currentNode->getNext(); } } #if defined(RSproto_STM_OK) if (flagOK == true) { ArduinoPins::fastWriteDigital(RSproto_STM_OK,HIGH); } else { ArduinoPins::fastWriteDigital(RSproto_STM_OK,LOW); } #endif #if defined(RSproto_STM_FAIL) if (flagOK == false) { ArduinoPins::fastWriteDigital(RSproto_STM_FAIL,HIGH); } else { ArduinoPins::fastWriteDigital(RSproto_STM_FAIL,LOW); } #endif #if defined(RSproto_STM_COMM) ArduinoPins::fastWriteDigital(RSproto_STM_COMM,LOW); #endif } // Link to chain of RSproto instances, left over from RSproto template. RSproto *RSproto::_busList = NULL; /************************************************************ * RSprotonode implementation ************************************************************/ /* -= RSprotonode =- // // Constructor for RSprotonode object */ RSprotonode::RSprotonode(VPIN firstVpin, int nPins, uint8_t nodeID) { _firstVpin = firstVpin; _nPins = nPins; _busNo = 0; _nodeID = nodeID; if (_nodeID > 254) _nodeID = 254; // Add this device to HAL device list IODevice::addDevice(this); _display(); // Add RSprotonode to RSproto object. RSproto *bus = RSproto::findBus(_busNo); if (bus != NULL) { bus->addNode(this); return; } }