/* * © 2021, Neil McKechnie. All rights reserved. * * This file is part of DCC++EX API * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ /* * DFPlayer is an MP3 player module with an SD card holder. It also has an integrated * amplifier, so it only needs a power supply and a speaker. * * This driver allows the device to be controlled through IODevice::write() and * IODevice::writeAnalogue() calls. * * The driver is configured as follows: * * DFPlayer::create(firstVpin, nPins, Serialn); * Where firstVpin is the first vpin reserved for reading the device, * nPins is the number of pins to be allocated (max 5) * and Serialn is the name of the Serial port connected to the DFPlayer (e.g. Serial2). * * * Example: * In mySetup function within mySetup.cpp: * DFPlayer::create(3500, 5, Serial2); * Writing a value 0-2999 to the first pin will select a numbered file from the SD card; * Writing a value 0-30 to the second pin will set the volume of the output; * Writing a digital value to the first pin will play or stop the file; * * From EX-RAIL, the following commands may be used: * SET(3500) -- starts playing the first file on the SD card * SET(3501) -- starts playing the second file on the SD card * etc. * RESET(3500) -- stops all playing on the player * WAITFOR(3500) -- wait for the file currently being played by the player to complete * * NB The DFPlayer's serial lines are not 5V safe, so connecting the Arduino TX directly * to the DFPlayer's RX terminal will cause lots of noise over the speaker, or worse. * A 1k resistor in series with the module's RX terminal will alleviate this. */ #ifndef IO_DFPlayer_h #define IO_DFPlayer_h #include "IODevice.h" class DFPlayer : public IODevice { private: HardwareSerial *_serial; bool _playing = false; uint8_t _inputIndex = 0; public: DFPlayer(VPIN firstVpin, int nPins, HardwareSerial &serial) { _firstVpin = firstVpin; _nPins = min(nPins, 3); _serial = &serial; addDevice(this); } static void create(VPIN firstVpin, int nPins, HardwareSerial &serial) { new DFPlayer(firstVpin, nPins, serial); } protected: void _begin() override { _serial->begin(9600); _display(); } void _loop(unsigned long) override { // Check for incoming data on _serial, and update busy flag accordingly. // Expected message is in the form "7F FF 06 3D xx xx xx xx xx EF" while (_serial->available()) { int c = _serial->read(); // DIAG(F("Received: %x"), c); if (c == 0x7E) _inputIndex = 1; else if ((c==0xFF && _inputIndex==1) || (c==0x06 && _inputIndex==2) || (c==0x3D && _inputIndex==3) || (_inputIndex >=4 && _inputIndex <= 8)) _inputIndex++; else if (c==0xEF && _inputIndex==9) { // End of play #ifdef DIAG_IO DIAG(F("DFPlayer: Finished")); #endif _playing = false; _inputIndex = 0; } } } // Write with value 1 starts playing a song. The relative pin number is the file number. // Write with value 0 stops playing. void _write(VPIN vpin, int value) override { int pin = vpin - _firstVpin; if (value) { // Value 1, start playing #ifdef DIAG_IO DIAG(F("DFPlayer: Play %d"), pin+1); #endif sendPacket(0x03, pin+1); _playing = true; } else { // Value 0, stop playing #ifdef DIAG_IO DIAG(F("DFPlayer: Stop")); #endif sendPacket(0x16); _playing = false; } } // WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0. // If value is zero, it stops playing. // WriteAnalogue on second pin sets the output volume. void _writeAnalogue(VPIN vpin, int value, uint8_t, uint16_t) override { uint8_t pin = _firstVpin - vpin; switch (pin) { case 0: if (value > 0) { // Play global track if (value > 2999) return; #ifdef DIAG_IO DIAG(F("DFPlayer: Play %d"), value); #endif sendPacket(0x03, value); _playing = true; } else if (value == 0){ #ifdef DIAG_IO DIAG(F("DFPlayer: Stop")); #endif sendPacket(0x16); _playing = false; } break; case 1: // Set volume (0-30) if (value > 30) value = 30; else if (value < 0) value = 0; #ifdef DIAG_IO DIAG(F("DFPlayer: Volume %d"), value); #endif sendPacket(0x06, value); break; default: break; } } bool _isBusy(VPIN vpin) override { (void)vpin; // avoid compiler warning. return _playing; } void _display() override { DIAG(F("DFPlayer Configured on Vpins:%d-%d")); } private: // 7E FF 06 0F 00 01 01 xx xx EF // 0 -> 7E is start code // 1 -> FF is version // 2 -> 06 is length // 3 -> 0F is command // 4 -> 00 is no receive // 5~6 -> 01 01 is argument // 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 ) // 9 -> EF is end code void sendPacket(uint8_t command, uint16_t arg = 0) { uint8_t out[] = { 0x7E, 0xFF, 06, command, 00, static_cast(arg >> 8), static_cast(arg & 0x00ff), 00, 00, 0xEF }; setChecksum(out); _serial->write(out, sizeof(out)); } uint16_t calcChecksum(uint8_t* packet) { uint16_t sum = 0; for (int i = 1; i < 7; i++) { sum += packet[i]; } return -sum; } void setChecksum(uint8_t* out) { uint16_t sum = calcChecksum(out); out[7] = (sum >> 8); out[8] = (sum & 0xff); } }; #endif // IO_DFPlayer_h