/* * © 2022 Chris Harlow * © 2022,2023 Harald Barth * © 2023 Colin Murdoch * All rights reserved. * * This file is part of DCC++EX * * This is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * It is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with CommandStation. If not, see . */ #include "TrackManager.h" #include "FSH.h" #include "DCCWaveform.h" #include "DCC.h" #include "MotorDriver.h" #include "DCCTimer.h" #include "DIAG.h" #include "CommandDistributor.h" #include "DCCEXParser.h" // Virtualised Motor shield multi-track hardware Interface #define FOR_EACH_TRACK(t) for (byte t=0;t<=lastTrack;t++) #define APPLY_BY_MODE(findmode,function) \ FOR_EACH_TRACK(t) \ if (track[t]->getMode()==findmode) \ track[t]->function; #ifndef DISABLE_PROG const int16_t HASH_KEYWORD_PROG = -29718; #endif const int16_t HASH_KEYWORD_MAIN = 11339; const int16_t HASH_KEYWORD_OFF = 22479; const int16_t HASH_KEYWORD_NONE = -26550; const int16_t HASH_KEYWORD_DC = 2183; const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity const int16_t HASH_KEYWORD_EXT = 8201; // External DCC signal const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii. const int16_t HASH_KEYWORD_AUTO = -5457; #ifdef BOOSTER_INPUT const int16_t HASH_KEYWORD_BOOST = 11269; #endif const int16_t HASH_KEYWORD_INV = 11857; MotorDriver * TrackManager::track[MAX_TRACKS]; int16_t TrackManager::trackDCAddr[MAX_TRACKS]; POWERMODE TrackManager::mainPowerGuess=POWERMODE::OFF; byte TrackManager::lastTrack=0; bool TrackManager::progTrackSyncMain=false; bool TrackManager::progTrackBoosted=false; int16_t TrackManager::joinRelay=UNUSED_PIN; #ifdef ARDUINO_ARCH_ESP32 byte TrackManager::tempProgTrack=MAX_TRACKS+1; // MAX_TRACKS+1 is the unused flag #endif #ifdef ANALOG_READ_INTERRUPT /* * sampleCurrent() runs from Interrupt */ void TrackManager::sampleCurrent() { static byte tr = 0; byte trAtStart = tr; static bool waiting = false; if (waiting) { if (! track[tr]->sampleCurrentFromHW()) { return; // no result, continue to wait } // found value, advance at least one track // for scope debug track[1]->setBrake(0); waiting = false; tr++; if (tr > lastTrack) tr = 0; if (lastTrack < 2 || track[tr]->getMode() & TRACK_MODE_PROG) { return; // We could continue but for prog track we // rather do it in next interrupt beacuse // that gives us well defined sampling point. // For other tracks we care less unless we // have only few (max 2) tracks. } } if (!waiting) { // look for a valid track to sample or until we are around while (true) { if (track[tr]->getMode() & ( TRACK_MODE_MAIN|TRACK_MODE_PROG|TRACK_MODE_DC|TRACK_MODE_BOOST|TRACK_MODE_EXT )) { track[tr]->startCurrentFromHW(); // for scope debug track[1]->setBrake(1); waiting = true; break; } tr++; if (tr > lastTrack) tr = 0; if (tr == trAtStart) // we are through and nothing found to do return; } } } #endif // The setup call is done this way so that the tracks can be in a list // from the config... the tracks default to NULL in the declaration void TrackManager::Setup(const FSH * shieldname, MotorDriver * track0, MotorDriver * track1, MotorDriver * track2, MotorDriver * track3, MotorDriver * track4, MotorDriver * track5, MotorDriver * track6, MotorDriver * track7 ) { addTrack(0,track0); addTrack(1,track1); addTrack(2,track2); addTrack(3,track3); addTrack(4,track4); addTrack(5,track5); addTrack(6,track6); addTrack(7,track7); // Default the first 2 tracks (which may be null) and perform HA waveform check. setTrackMode(0,TRACK_MODE_MAIN); #ifndef DISABLE_PROG setTrackMode(1,TRACK_MODE_PROG); #else setTrackMode(1,TRACK_MODE_MAIN); #endif // Fault pin config for odd motor boards (example pololu) FOR_EACH_TRACK(t) { for (byte s=t+1;s<=lastTrack;s++) { if (track[t]->getFaultPin() != UNUSED_PIN && track[t]->getFaultPin() == track[s]->getFaultPin()) { track[t]->setCommonFaultPin(); track[s]->setCommonFaultPin(); DIAG(F("Common Fault pin tracks %c and %c"), t+'A', s+'A'); } } } DCC::setShieldName(shieldname); } void TrackManager::addTrack(byte t, MotorDriver* driver) { track[t]=driver; if (driver) { track[t]->setPower(POWERMODE::OFF); track[t]->setMode(TRACK_MODE_NONE); track[t]->setTrackLetter('A'+t); lastTrack=t; } } // setDCCSignal(), called from interrupt context // does assume ports are shadowed if they can be void TrackManager::setDCCSignal( bool on) { HAVE_PORTA(shadowPORTA=PORTA); HAVE_PORTB(shadowPORTB=PORTB); HAVE_PORTC(shadowPORTC=PORTC); HAVE_PORTD(shadowPORTD=PORTD); HAVE_PORTE(shadowPORTE=PORTE); HAVE_PORTF(shadowPORTF=PORTF); APPLY_BY_MODE(TRACK_MODE_MAIN,setSignal(on)); HAVE_PORTA(PORTA=shadowPORTA); HAVE_PORTB(PORTB=shadowPORTB); HAVE_PORTC(PORTC=shadowPORTC); HAVE_PORTD(PORTD=shadowPORTD); HAVE_PORTE(PORTE=shadowPORTE); HAVE_PORTF(PORTF=shadowPORTF); } void TrackManager::setCutout( bool on) { (void) on; // TODO Cutout needs fake ports as well // TODO APPLY_BY_MODE(TRACK_MODE_MAIN,setCutout(on)); } // setPROGSignal(), called from interrupt context // does assume ports are shadowed if they can be void TrackManager::setPROGSignal( bool on) { HAVE_PORTA(shadowPORTA=PORTA); HAVE_PORTB(shadowPORTB=PORTB); HAVE_PORTC(shadowPORTC=PORTC); HAVE_PORTD(shadowPORTD=PORTD); HAVE_PORTE(shadowPORTE=PORTE); HAVE_PORTF(shadowPORTF=PORTF); APPLY_BY_MODE(TRACK_MODE_PROG,setSignal(on)); HAVE_PORTA(PORTA=shadowPORTA); HAVE_PORTB(PORTB=shadowPORTB); HAVE_PORTC(PORTC=shadowPORTC); HAVE_PORTD(PORTD=shadowPORTD); HAVE_PORTE(PORTE=shadowPORTE); HAVE_PORTF(PORTF=shadowPORTF); } // setDCSignal(), called from normal context // MotorDriver::setDCSignal handles shadowed IO port changes. // with interrupts turned off around the critical section void TrackManager::setDCSignal(int16_t cab, byte speedbyte) { FOR_EACH_TRACK(t) { if (trackDCAddr[t]!=cab && cab != 0) continue; if (track[t]->getMode() & TRACK_MODE_DC) track[t]->setDCSignal(speedbyte); } } bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr) { if (trackToSet>lastTrack || track[trackToSet]==NULL) return false; //DIAG(F("Track=%c Mode=%d"),trackToSet+'A', mode); // DC tracks require a motorDriver that can set brake! if (mode & TRACK_MODE_DC) { #if defined(ARDUINO_AVR_UNO) DIAG(F("Uno has no PWM timers available for DC")); return false; #endif if (!track[trackToSet]->brakeCanPWM()) { DIAG(F("Brake pin can't PWM: No DC")); return false; } } #ifdef ARDUINO_ARCH_ESP32 // remove pin from MUX matrix and turn it off pinpair p = track[trackToSet]->getSignalPin(); //DIAG(F("Track=%c remove pin %d"),trackToSet+'A', p.pin); gpio_reset_pin((gpio_num_t)p.pin); if (p.invpin != UNUSED_PIN) { //DIAG(F("Track=%c remove ^pin %d"),trackToSet+'A', p.invpin); gpio_reset_pin((gpio_num_t)p.invpin); } #ifdef BOOSTER_INPUT if (mode & TRACK_MODE_BOOST) { //DIAG(F("Track=%c mode boost pin %d"),trackToSet+'A', p.pin); pinMode(BOOSTER_INPUT, INPUT); gpio_matrix_in(26, SIG_IN_FUNC228_IDX, false); //pads 224 to 228 available as loopback gpio_matrix_out(p.pin, SIG_IN_FUNC228_IDX, false, false); if (p.invpin != UNUSED_PIN) { gpio_matrix_out(p.invpin, SIG_IN_FUNC228_IDX, true /*inverted*/, false); } } else // elseif clause continues #endif if (mode & (TRACK_MODE_MAIN | TRACK_MODE_PROG | TRACK_MODE_DC)) { // gpio_reset_pin may reset to input pinMode(p.pin, OUTPUT); if (p.invpin != UNUSED_PIN) pinMode(p.invpin, OUTPUT); } #endif #ifndef DISABLE_PROG if (mode & TRACK_MODE_PROG) { #else if (false) { #endif // only allow 1 track to be prog FOR_EACH_TRACK(t) if ( (track[t]->getMode() & TRACK_MODE_PROG) && t != trackToSet) { track[t]->setPower(POWERMODE::OFF); track[t]->setMode(TRACK_MODE_NONE); track[t]->makeProgTrack(false); // revoke prog track special handling streamTrackState(NULL,t); } track[trackToSet]->makeProgTrack(true); // set for prog track special handling } else { track[trackToSet]->makeProgTrack(false); // only the prog track knows it's type } track[trackToSet]->setMode(mode); trackDCAddr[trackToSet]=dcAddr; streamTrackState(NULL,trackToSet); // When a track is switched, we must clear any side effects of its previous // state, otherwise trains run away or just dont move. // This can be done BEFORE the PWM-Timer evaluation (methinks) if (!(mode & TRACK_MODE_DC)) { // DCC tracks need to have set the PWM to zero or they will not work. track[trackToSet]->detachDCSignal(); track[trackToSet]->setBrake(false); } // BOOST: // Leave it as is // otherwise: // EXT is a special case where the signal pin is // turned off. So unless that is set, the signal // pin should be turned on if (!(mode & TRACK_MODE_BOOST)) track[trackToSet]->enableSignal(!(mode & TRACK_MODE_EXT)); #ifndef ARDUINO_ARCH_ESP32 // re-evaluate HighAccuracy mode // We can only do this is all main and prog tracks agree bool canDo=true; FOR_EACH_TRACK(t) { // DC tracks must not have the DCC PWM switched on // so we globally turn it off if one of the PWM // capable tracks is now DC or DCX. if (track[t]->getMode() & TRACK_MODE_DC) { if (track[t]->isPWMCapable()) { canDo=false; // this track is capable but can not run PWM break; // in this mode, so abort and prevent globally below } else { track[t]->trackPWM=false; // this track sure can not run with PWM //DIAG(F("Track %c trackPWM 0 (not capable)"), t+'A'); } } else if (track[t]->getMode() & (TRACK_MODE_MAIN |TRACK_MODE_PROG)) { track[t]->trackPWM = track[t]->isPWMCapable(); // trackPWM is still a guess here //DIAG(F("Track %c trackPWM %d"), t+'A', track[t]->trackPWM); canDo &= track[t]->trackPWM; } } if (!canDo) { // if we discover that HA mode was globally impossible // we must adjust the trackPWM capabilities FOR_EACH_TRACK(t) { track[t]->trackPWM=false; //DIAG(F("Track %c trackPWM 0 (global override)"), t+'A'); } DCCTimer::clearPWM(); // has to be AFTER trackPWM changes because if trackPWM==true this is undone for that track } #else // For ESP32 we just reinitialize the DCC Waveform DCCWaveform::begin(); // setMode() again AFTER Waveform::begin() of ESP32 fixes INVERTED signal track[trackToSet]->setMode(mode); #endif // This block must be AFTER the PWM-Timer modifications if (mode & TRACK_MODE_DC) { // DC tracks need to be given speed of the throttle for that cab address // otherwise will not match other tracks on same cab. // This also needs to allow for inverted DCX applyDCSpeed(trackToSet); } // Normal running tracks are set to the global power state track[trackToSet]->setPower( (mode & (TRACK_MODE_MAIN | TRACK_MODE_DC | TRACK_MODE_EXT | TRACK_MODE_BOOST)) ? mainPowerGuess : POWERMODE::OFF); //DIAG(F("TrackMode=%d"),mode); return true; } void TrackManager::applyDCSpeed(byte t) { uint8_t speedByte=DCC::getThrottleSpeedByte(trackDCAddr[t]); track[t]->setDCSignal(speedByte); } bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[]) { if (params==0) { // <=> List track assignments FOR_EACH_TRACK(t) streamTrackState(stream,t); return true; } p[0]-=HASH_KEYWORD_A; // convert A... to 0.... if (params>1 && (p[0]<0 || p[0]>=MAX_TRACKS)) return false; if (params==2 && p[1]==HASH_KEYWORD_MAIN) // <= id MAIN> return setTrackMode(p[0],TRACK_MODE_MAIN); #ifndef DISABLE_PROG if (params==2 && p[1]==HASH_KEYWORD_PROG) // <= id PROG> return setTrackMode(p[0],TRACK_MODE_PROG); #endif if (params==2 && (p[1]==HASH_KEYWORD_OFF || p[1]==HASH_KEYWORD_NONE)) // <= id OFF> <= id NONE> return setTrackMode(p[0],TRACK_MODE_NONE); if (params==2 && p[1]==HASH_KEYWORD_EXT) // <= id EXT> return setTrackMode(p[0],TRACK_MODE_EXT); #ifdef BOOSTER_INPUT if (params==2 && p[1]==HASH_KEYWORD_BOOST) // <= id BOOST> return setTrackMode(p[0],TRACK_MODE_BOOST); #endif if (params==2 && p[1]==HASH_KEYWORD_AUTO) // <= id AUTO> return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_AUTOINV); if (params==2 && p[1]==HASH_KEYWORD_INV) // <= id AUTO> return setTrackMode(p[0], track[p[0]]->getMode() | TRACK_MODE_INV); if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab> return setTrackMode(p[0],TRACK_MODE_DC,p[2]); if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab> return setTrackMode(p[0],TRACK_MODE_DC|TRACK_MODE_INV,p[2]); return false; } void TrackManager::streamTrackState(Print* stream, byte t) { // null stream means send to commandDistributor for broadcast if (track[t]==NULL) return; auto format=F("<= %d XXX>\n"); TRACK_MODE tm = track[t]->getMode(); if (tm & TRACK_MODE_MAIN) { if(tm & TRACK_MODE_AUTOINV) format=F("<= %c MAIN A>\n"); else if (tm & TRACK_MODE_INV) format=F("<= %c MAIN I>\n"); else format=F("<= %c MAIN>\n"); } #ifndef DISABLE_PROG else if (tm & TRACK_MODE_PROG) format=F("<= %c PROG>\n"); #endif else if (tm & TRACK_MODE_NONE) format=F("<= %c NONE>\n"); else if(tm & TRACK_MODE_EXT) format=F("<= %c EXT>\n"); else if(tm & TRACK_MODE_BOOST) { if(tm & TRACK_MODE_AUTOINV) format=F("<= %c B A>\n"); else if (tm & TRACK_MODE_INV) format=F("<= %c B I>\n"); else format=F("<= %c B>\n"); } else if (tm & TRACK_MODE_DC) { if (tm & TRACK_MODE_INV) format=F("<= %c DCX %d>\n"); else format=F("<= %c DC %d>\n"); } if (stream) StringFormatter::send(stream,format,'A'+t, trackDCAddr[t]); else CommandDistributor::broadcastTrackState(format,'A'+t, trackDCAddr[t]); } byte TrackManager::nextCycleTrack=MAX_TRACKS; void TrackManager::loop() { DCCWaveform::loop(); #ifndef DISABLE_PROG DCCACK::loop(); #endif bool dontLimitProg=DCCACK::isActive() || progTrackSyncMain || progTrackBoosted; nextCycleTrack++; if (nextCycleTrack>lastTrack) nextCycleTrack=0; if (track[nextCycleTrack]==NULL) return; MotorDriver * motorDriver=track[nextCycleTrack]; bool useProgLimit=dontLimitProg ? false : (bool)(track[nextCycleTrack]->getMode() & TRACK_MODE_PROG); motorDriver->checkPowerOverload(useProgLimit, nextCycleTrack); } MotorDriver * TrackManager::getProgDriver() { FOR_EACH_TRACK(t) if (track[t]->getMode() & TRACK_MODE_PROG) return track[t]; return NULL; } #ifdef ARDUINO_ARCH_ESP32 std::vectorTrackManager::getMainDrivers() { std::vector v; FOR_EACH_TRACK(t) if (track[t]->getMode() & TRACK_MODE_MAIN) v.push_back(track[t]); return v; } #endif // Set track power for all tracks with this mode void TrackManager::setTrackPower(TRACK_MODE trackmodeToMatch, POWERMODE powermode) { FOR_EACH_TRACK(t) { MotorDriver *driver=track[t]; TRACK_MODE trackmodeOfTrack = driver->getMode(); if (trackmodeToMatch & trackmodeOfTrack) { if (powermode == POWERMODE::ON) { if (trackmodeOfTrack & TRACK_MODE_DC) { driver->setBrake(true); // DC starts with brake on applyDCSpeed(t); // speed match DCC throttles } else { // toggle brake before turning power on - resets overcurrent error // on the Pololu board if brake is wired to ^D2. driver->setBrake(true); driver->setBrake(false); // DCC runs with brake off } } driver->setPower(powermode); } } } // Set track power for this track, inependent of mode void TrackManager::setTrackPower(POWERMODE powermode, byte t) { MotorDriver *driver=track[t]; TRACK_MODE trackmode = driver->getMode(); if (trackmode & TRACK_MODE_DC) { if (powermode == POWERMODE::ON) { driver->setBrake(true); // DC starts with brake on applyDCSpeed(t); // speed match DCC throttles } } else { if (powermode == POWERMODE::ON) { // toggle brake before turning power on - resets overcurrent error // on the Pololu board if brake is wired to ^D2. driver->setBrake(true); driver->setBrake(false); // DCC runs with brake off } } driver->setPower(powermode); } void TrackManager::reportPowerChange(Print* stream, byte thistrack) { // This function is for backward JMRI compatibility only // It reports the first track only, as main, regardless of track settings. // int maxCurrent=track[0]->raw2mA(track[0]->getRawCurrentTripValue()); StringFormatter::send(stream, F("\n"), track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent); } // returns state of the one and only prog track POWERMODE TrackManager::getProgPower() { FOR_EACH_TRACK(t) if (track[t]->getMode() & TRACK_MODE_PROG) return track[t]->getPower(); // optimize: there is max one prog track return POWERMODE::OFF; } // returns on if all are on. returns off otherwise POWERMODE TrackManager::getMainPower() { POWERMODE result = POWERMODE::OFF; FOR_EACH_TRACK(t) { if (track[t]->getMode() & TRACK_MODE_MAIN) { POWERMODE p = track[t]->getPower(); if (p == POWERMODE::OFF) return POWERMODE::OFF; // done and out if (p == POWERMODE::ON) result = POWERMODE::ON; } } return result; } bool TrackManager::getPower(byte t, char s[]) { if (t > lastTrack) return false; if (track[t]) { s[0] = track[t]->getPower() == POWERMODE::ON ? '1' : '0'; s[2] = t + 'A'; return true; } return false; } void TrackManager::reportObsoleteCurrent(Print* stream) { // This function is for backward JMRI compatibility only // It reports the first track only, as main, regardless of track settings. // int maxCurrent=track[0]->raw2mA(track[0]->getRawCurrentTripValue()); StringFormatter::send(stream, F("\n"), track[0]->raw2mA(track[0]->getCurrentRaw(false)), maxCurrent, maxCurrent); } void TrackManager::reportCurrent(Print* stream) { StringFormatter::send(stream,F("getPower()==POWERMODE::OVERLOAD) ? -1 : track[t]->raw2mA(track[t]->getCurrentRaw(false))); } StringFormatter::send(stream,F(">\n")); } void TrackManager::reportGauges(Print* stream) { StringFormatter::send(stream,F("raw2mA(track[t]->getRawCurrentTripValue())); } StringFormatter::send(stream,F(">\n")); } void TrackManager::setJoinRelayPin(byte joinRelayPin) { joinRelay=joinRelayPin; if (joinRelay!=UNUSED_PIN) { pinMode(joinRelay,OUTPUT); digitalWrite(joinRelay,LOW); // LOW is relay disengaged } } void TrackManager::setJoin(bool joined) { #ifdef ARDUINO_ARCH_ESP32 if (joined) { FOR_EACH_TRACK(t) { if (track[t]->getMode() & TRACK_MODE_PROG) { tempProgTrack = t; setTrackMode(t, TRACK_MODE_MAIN); break; } } } else { if (tempProgTrack != MAX_TRACKS+1) { // as setTrackMode with TRACK_MODE_PROG defaults to // power off, we will take the current power state // of our track and then preserve that state. POWERMODE tPTmode = track[tempProgTrack]->getPower(); //get current power status of this track setTrackMode(tempProgTrack, TRACK_MODE_PROG); track[tempProgTrack]->setPower(tPTmode); //set track status as it was before tempProgTrack = MAX_TRACKS+1; } } #endif progTrackSyncMain=joined; if (joinRelay!=UNUSED_PIN) digitalWrite(joinRelay,joined?HIGH:LOW); } bool TrackManager::isPowerOn(byte t) { if (track[t]->getPower()!=POWERMODE::ON) return false; return true; } bool TrackManager::isProg(byte t) { if (track[t]->getMode() & TRACK_MODE_PROG) return true; return false; } byte TrackManager::returnMode(byte t) { return (track[t]->getMode()); } int16_t TrackManager::returnDCAddr(byte t) { return (trackDCAddr[t]); } const char* TrackManager::getModeName(byte Mode) { //DIAG(F("PowerMode %d"), Mode); switch (Mode) { case 1: return "NONE"; case 2: return "MAIN"; case 4: return "PROG"; case 8: return "DC"; case 16: return "DCX"; case 32: return "EXT"; default: return "----"; } }