1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-22 23:56:13 +01:00
CommandStation-EX/IO_I2CDFPlayer-test4.h
kempe63 74c5a974e2 SC16IS750 test and test on mux
Tested SC16IS750 (single channel UART) for compatibility
Tested on PCA9548 mux
Both successful
2024-02-03 15:16:09 +00:00

1229 lines
55 KiB
C++

/*
* © 2023, Neil McKechnie. All rights reserved.
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
/*
* DFPlayer is an MP3 player module with an SD card holder. It also has an integrated
* amplifier, so it only needs a power supply and a speaker.
* This driver is a modified version of the IO_DFPlayer.h file
* *********************************************************************************************
*
* 2023, Added NXP SC16IS752 I2C Dual UART to enable the DFPlayer connection over the I2C bus
* The SC16IS752 has 64 bytes TX & RX FIFO buffer
* First version without interrupts from I2C UART and only RX/TX are used, interrupts may not be
* needed as the RX Fifo holds the reply
*
* 2024, Issue with using both UARTs simultaniously, the first configured in myHal.cpp seems to get
* overwritten by the second configured.
* Possible solution is to handle both uarts in the same IO_I2CDFPLayer.h file as it seems that I2CManager
* is not able to disinguise the 2 UARTs as they have the same I2C address
*
* 2024-01-22: Taken sendpacket and associated code out of _begin(), let _loop() handle it, need testing
*
* myHall.cpp configuration syntax:
*
* I2CDFPlayer::create(1st vPin, vPins, I2C address, xtal);
*
* Parameters:
* 1st vPin : First virtual pin that EX-Rail can control to play a sound, use PLAYSOUND command (alias of ANOUT)
* vPins : Total number of virtual pins allocated (2 vPins are supported, one for each UART)
* 1st vPin for UART 0, 2nd for UART 1
* I2C Address : I2C address of the serial controller, in 0x format
* xtal : 0 for 1,8432Mhz, 1 for 14,7456Mhz
*
*
* The vPin is also a pin that can be read, it indicate if the DFPlayer has finished playing a track
*
*/
#ifndef IO_I2CDFPlayer_h
#define IO_I2CDFPlayer_h
#include "IODevice.h"
#include "I2CManager.h"
#include "DIAG.h"
// Debug and diagnostic defines, enable too many will result in slowing the driver
#define DIAG_I2CDFplayer
//#define DIAG_I2CDFplayer_data
//#define DIAG_I2CDFplayer_reg
//#define DIAG_I2CDFplayer_playing
class I2CDFPlayer : public IODevice {
private:
// Common parameters
const uint8_t MAXVOLUME=30;
// Communication parameters for the DFPlayer are fixed at 8 bit, No parity, 1 stopbit
uint8_t WORD_LEN = 0x03; // Value LCR bit 0,1
uint8_t STOP_BIT = 0x00; // Value LCR bit 2
uint8_t PARITY_ENA = 0x00; // Value LCR bit 3
uint8_t PARITY_TYPE = 0x00; // Value LCR bit 4
uint32_t BAUD_RATE = 9600;
uint8_t PRESCALER = 0x01; // Value MCR bit 7
uint8_t RETRYCOUNT_INIT = 0x3;
unsigned long _sc16is752_xtal_freq;
unsigned long SC16IS752_XTAL_FREQ_LOW = 1843200; // To support cheap eBay/AliExpress SC16IS752 boards
unsigned long SC16IS752_XTAL_FREQ_HIGH = 14745600; // Support for higher baud rates, standard for modular EX-IO system
uint8_t TEMP_REG_VAL = 0x00;
uint8_t _inputIndex = 0;
uint8_t _recvCMD; // Last received command code byte
// uint8_t _inbuffer[10]; // common buffer for processing data from DFPLayer
uint8_t RX_BUFFER = 0x00; // nr of bytes copied into _inbuffer
uint8_t status; // I2C status
uint8_t _uartSent = _UART_1; // Last uart used to send packet
uint8_t _uartReceive = _UART_1; // Last uart to receive packet
uint8_t _outbuffer[11]; // DFPlayer command is 10 bytes + 1 byte register address & UART channel
uint8_t _inbuffer[10]; // expected DFPlayer return 10 bytes
// SC16IS752 defines
I2CAddress _I2CAddress;
I2CRB _rb;
// Parameters and variables for UART 0
uint8_t FIFO_RX_LEVEL_0 = 0x00;
uint8_t FIFO_TX_LEVEL_0 = 0x00;
uint8_t _UART_0 = 0x00;
uint8_t _retryCounter_0 = RETRYCOUNT_INIT; // Max retries before timing out
bool _playing_0 = false;
uint8_t _deviceState_0 = DEVSTATE_NORMAL; // Devivce State for DFPLayer
unsigned long _commandSendTime_0; // Time (us) that last transmit took place.
unsigned long _timeoutTime_0;
bool _awaitingResponse_0 = false;
uint8_t _requestedVolumeLevel_0 = MAXVOLUME;
uint8_t _currentVolume_0 = MAXVOLUME;
int _requestedSong_0 = -1; // -1=none, 0=stop, >0=file number
bool _repeat_0 = false; // audio file is repeat playing
uint8_t _previousCmd_0 = true;
bool _playCmd_0 = false;
bool _volCmd_0 = false;
bool _folderCmd_0 = false;
uint8_t _requestedFolder_0 = 0x01; // default to folder 01
uint8_t _currentFolder_0 = 0x01; // default to folder 01
bool _repeatCmd_0 = false;
bool _stopplayCmd_0 = false;
bool _resetCmd_0 = false;
bool _eqCmd_0 = false;
uint8_t _requestedEQValue_0 = NORMAL;
uint8_t _currentEQvalue_0 = NORMAL; // start equalizer value
bool _daconCmd_0 = false;
uint8_t _audioMixer_0 = 0x01; // Default to output amplifier 1
bool _setamCmd_0 = false; // Set the Audio mixer channel
// Parameters and variables for UART 1
uint8_t FIFO_RX_LEVEL_1 = 0x00;
uint8_t FIFO_TX_LEVEL_1 = 0x00;
uint8_t _UART_1 = 0x01;
uint8_t _retryCounter_1 = RETRYCOUNT_INIT; // Max retries before timing out
bool _playing_1 = false;
uint8_t _deviceState_1 = DEVSTATE_NORMAL; // Devivce State for DFPLayer
unsigned long _commandSendTime_1; // Time (us) that last transmit took place.
unsigned long _timeoutTime_1;
bool _awaitingResponse_1 = false;
uint8_t _requestedVolumeLevel_1 = MAXVOLUME;
uint8_t _currentVolume_1 = MAXVOLUME;
int _requestedSong_1 = -1; // -1=none, 0=stop, >0=file number
bool _repeat_1 = false; // audio file is repeat playing
uint8_t _previousCmd_1 = true;
bool _playCmd_1 = false;
bool _volCmd_1 = false;
bool _folderCmd_1 = false;
uint8_t _requestedFolder_1 = 0x01; // default to folder 01
uint8_t _currentFolder_1 = 0x01; // default to folder 01
bool _repeatCmd_1 = false;
bool _stopplayCmd_1 = false;
bool _resetCmd_1 = false;
bool _eqCmd_1 = false;
uint8_t _requestedEQValue_1 = NORMAL;
uint8_t _currentEQvalue_1 = NORMAL; // start equalizer value
bool _daconCmd_1 = false;
uint8_t _audioMixer_1 = 0x01; // Default to output amplifier 1
bool _setamCmd_1 = false; // Set the Audio mixer channel
public:
// Constructor
I2CDFPlayer(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal){
_firstVpin = firstVpin;
_nPins = nPins;
_I2CAddress = i2cAddress;
if (xtal == 0){
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_LOW;
} else { // should be 1
_sc16is752_xtal_freq = SC16IS752_XTAL_FREQ_HIGH;
}
addDevice(this);
}
public:
static void create(VPIN firstVpin, int nPins, I2CAddress i2cAddress, uint8_t xtal) {
if (checkNoOverlap(firstVpin, nPins, i2cAddress)) new I2CDFPlayer(firstVpin, nPins, i2cAddress, xtal);
}
void _begin() override {
// check if SC16IS752 exist first, initialize and then resume DFPlayer init via SC16IS752
I2CManager.begin();
I2CManager.setClock(1000000);
if (I2CManager.exists(_I2CAddress)){
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
Init_SC16IS752(_UART_0); // Initialize _UART_0
//Init_SC16IS752(_UART_1); // Initialize _UART_1
// /*
if (_deviceState_0 == DEVSTATE_FAILED || _deviceState_1 == DEVSTATE_FAILED){
DIAG(F("SC16IS752 I2C:%s initialization failed"), _I2CAddress.toString());
}
} else {
DIAG(F("SC16IS752 I2C:%s UART not detected"), _I2CAddress.toString());
} // */
#if defined(DIAG_IO)
_display();
#endif
// Now init DFPlayer 0
// Send a query to the device to see if it responds
_deviceState_0 = DEVSTATE_INITIALISING; // _deviceState is for uart 0
// if (status == I2C_STATUS_OK){
//sendPacket(0x42,0,0,_UART_0); // take this out of _begin() and let _loop handle it
//_timeoutTime_0 = micros() + 5000000UL; // 5 second timeout
//_awaitingResponse_0 = true;
// }
if (I2CManager.exists(_I2CAddress)){
DIAG(F("SC16IS752 I2C:%s UART detected"), _I2CAddress.toString());
Init_SC16IS752(_UART_1); // Initialize UART_1
if (_deviceState_1 == DEVSTATE_FAILED){
DIAG(F("SC16IS752 I2C:%s initialization failed, UART: %d"), _I2CAddress.toString(), _UART_1);
}
} else {
DIAG(F("SC16IS752 I2C:%s UART not detected, UART: %d"), _I2CAddress.toString(), _UART_0);
}
#if defined(DIAG_IO)
_display();
#endif
// Now init DFPlayer 1
// Send a query to the device to see if it responds
_deviceState_1 = DEVSTATE_INITIALISING; // _deviceState is for UART 1
//if (status == I2C_STATUS_OK){
// sendPacket(0x42,0,0,_UART_1); // take this out of _begin() and let _loop handle it
//_timeoutTime_1 = micros() + 5000000UL; // 5 second timeout
//_awaitingResponse_1 = true;
// }
}
void _loop(unsigned long currentMicros) override {
// Read responses from device
uint8_t _uart;
if(_rb.isBusy()) {
DIAG(F("I2CDFPlayer: %s, Loop, _rb.isBusy, do nothing"), _I2CAddress.toString());
return;
}
status = _rb.status;
if (status == I2C_STATUS_OK) {
_uart = _UART_0;
processIncoming(currentMicros, _uart);
// Check if a command sent to device has timed out. Allow 0.5 second for response
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
if(_uart == _UART_0){
if (_awaitingResponse_0 && (int32_t)(currentMicros - _timeoutTime_0) > 0) { // timeout triggered
if(_retryCounter_0 == 0){ // retry counter out of luck, must take the device to failed state
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART: %d"), _I2CAddress.toString(), _uart);
_deviceState_0 = DEVSTATE_FAILED; // Fail uart 0
_awaitingResponse_0 = false;
_playing_0 = false;
_retryCounter_0 = RETRYCOUNT_INIT;
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter_0: %d on UART: %d"), _I2CAddress.toString(), _retryCounter_0, _uart);
#endif
_timeoutTime_0 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
_awaitingResponse_0 = false; // trigger sending a keep alive 0x42 in processOutgoing()
_retryCounter_0 --; // decrement retry counter
resetRX_fifo(_uart); // reset the RX fifo as it has corrupt data
}
}
}
_uart = _UART_1;
//processIncoming(currentMicros, _uart);
// Check if a command sent to device has timed out. Allow 0.5 second for response
// added retry counter, sometimes we do not sent keep alive due to other commands sent to DFPlayer
if(_uart == _UART_1){
if (_awaitingResponse_1 && (int32_t)(currentMicros - _timeoutTime_1) > 0) { // timeout triggered
if(_retryCounter_1 == 0){ // retry counter out of luck, must take the device to failed state
DIAG(F("I2CDFPlayer:%s, DFPlayer not responding on UART: %d"), _I2CAddress.toString(), _uart);
_deviceState_1 = DEVSTATE_FAILED; // Fail uart 1
_awaitingResponse_1 = false;
_playing_1 = false;
_retryCounter_1 = RETRYCOUNT_INIT;
} else { // timeout and retry protection and recovery of corrupt data frames from DFPlayer
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, DFPlayer timout, retry counter_1: %d on UART: %d"), _I2CAddress.toString(), _retryCounter_1, _uart);
#endif
_timeoutTime_1 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds// reset timeout
_awaitingResponse_1 = false; // trigger sending a keep alive 0x42 in processOutgoing()
_retryCounter_1 --; // decrement retry counter
resetRX_fifo(_uart); // reset the RX fifo as it has corrupt data
}
}
}
}
if(_rb.isBusy()) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, _rb.isBusy"), _I2CAddress.toString());
#endif
return; // I2C operation still ongoing return
}
status = _rb.status;
if (status == I2C_STATUS_OK) {
if(!_rb.isBusy()){ // not busy, save to sent data
if (_uartSent == _UART_1){ // Previous sent was _UART_1, now sent _UART_0
//#ifdef DIAG_I2CDFplayer_playing
// DIAG(F("I2CDFPlayer: %s, sent uart 0"), _I2CAddress.toString());
//#endif
// Send any commands that need to go.
processOutgoing(currentMicros, _UART_0);
_uartSent = _UART_0;
} else {
//#ifdef DIAG_I2CDFplayer_playing
// DIAG(F("I2CDFPlayer: %s, sent uart 1"), _I2CAddress.toString());
//#endif
//processOutgoing(currentMicros, _UART_1);
_uartSent = _UART_1;
}
delayUntil(currentMicros + 10000); // Only enter every 10ms
}
}
}
// Check for incoming data, and update busy flag and other state accordingly
void processIncoming(unsigned long currentMicros, uint8_t _uart) {
// Expected message is in the form "7E FF 06 3D xx xx xx xx xx EF"
RX_fifo_lvl(_uart);
if(_uart == _UART_0){ // Process uart 0
if (FIFO_RX_LEVEL_0 >= 10) {
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART: %d, FIFO_RX_LEVEL_0: %d"),_I2CAddress.toString(), _uart, FIFO_RX_LEVEL_0);
#endif
_outbuffer[0] = REG_RHR << 3 | _uart << 1;
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer[] has the data now
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s, Receive data, RX FIFO Data, UART: %d"), _I2CAddress.toString(), _uart);
for (int i = 0; i < sizeof _inbuffer; i++){
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
}
#endif
} else { //RX fifo level less < 10, do nothing
FIFO_RX_LEVEL_0 = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL_0 next time
return; // No data or not enough data in rx fifo, check again next time around
}
} else { // Process uart 1
if (FIFO_RX_LEVEL_1 >= 10) {
#ifdef DIAG_I2CDFplayer
DIAG(F("I2CDFPlayer: %s Retrieving data from RX Fifo on UART: %d, FIFO_RX_LEVEL_1: %d"),_I2CAddress.toString(), _uart, FIFO_RX_LEVEL_1);
#endif
_outbuffer[0] = REG_RHR << 3 | _uart << 1;
// Only copy 10 bytes from RX FIFO, there maybe additional partial return data after a track is finished playing in the RX FIFO
I2CManager.read(_I2CAddress, _inbuffer, 10, _outbuffer, 1); // inbuffer_1[] has the data now
RX_BUFFER = 10; // We have copied 10 bytes from RX FIFO to _inbuffer
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s, Receive data, RX FIFO Data, UART: %d"), _I2CAddress.toString(), _uart);
for (int i = 0; i < sizeof _inbuffer; i++){
DIAG(F("SC16IS752: Data _inbuffer[0x%x]: 0x%x"), i, _inbuffer[i]);
}
#endif
} else { //RX fifo level less < 10, do nothing
FIFO_RX_LEVEL_1 = 0; //set to 0, we'll read a fresh FIFO_RX_LEVEL_1 next time
return; // No data or not enough data in rx fifo, check again next time around
}
}
// Tranfer _inbuffer or _inbuffer to _inbuffer (common buffer to process incomming frame from DFPLayer)
// _inbuffer is used for both uarts
if (_uart == _UART_0){
for( int i = 0;i < sizeof _inbuffer; i++){
_inbuffer[i] = _inbuffer[i];
}
} else if (_uart == _UART_1){
for( int i = 0;i < sizeof _inbuffer; i++){
_inbuffer[i] = _inbuffer[i];
}
}
bool ok = false;
while (RX_BUFFER != 0) {
int c = _inbuffer[_inputIndex]; // Start at 0, increment to FIFO_RX_LEVEL
switch (_inputIndex) {
case 0:
if (c == 0x7E) ok = true; // Start flag
break;
case 1:
if (c == 0xFF) ok = true; // Version
break;
case 2:
if (c== 0x06) ok = true; // Length
break;
case 3:
_recvCMD = c; // CMD byte
ok = true;
break;
case 6:
switch (_recvCMD) {
#ifdef DIAG_I2CDFplayer_data
if(_uart == _UART_0){
DIAG(F("I2CDFPlayer: %s, uart: %d, _recvCMD: 0x%x _awaitingResponse_0: 0x0%x"),_I2CAddress.toString(), _uart, _recvCMD, _awaitingResponse_0);
} else { // uart 1
DIAG(F("I2CDFPlayer: %s, uart: %d, _recvCMD: 0x%x _awaitingResponse_1: 0x0%x"),_I2CAddress.toString(), _uart, _recvCMD, _awaitingResponse_1);
}
#endif
case 0x42:
// Response to status query
if(_uart == _UART_0){
_playing_0 = (c != 0); // Mark the DFPLayer online and cancel timeout
if (_deviceState_0 == DEVSTATE_INITIALISING) {
_deviceState_0 = DEVSTATE_NORMAL;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d, _deviceState_0: 0x0%x"),_I2CAddress.toString(), _recvCMD, _uart, _deviceState_0);
#endif
#ifdef DIAG_IO
_display();
#endif
}
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d"), _I2CAddress.toString(), _recvCMD, _uart);
#endif
_awaitingResponse_0 = false;
} else { // uart 1
_playing_1 = (c != 0); // Mark the DFPLayer online and cancel timeout
if (_deviceState_1 == DEVSTATE_INITIALISING) {
_deviceState_1 = DEVSTATE_NORMAL;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d, _deviceState_1: 0x0%x"),_I2CAddress.toString(), _recvCMD, _uart, _deviceState_1);
#endif
#ifdef DIAG_IO
_display();
#endif
}
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: %s, keepalive response: 0x%x, uart: %d"), _I2CAddress.toString(), _recvCMD, _uart);
#endif
_awaitingResponse_1 = false;
}
break;
case 0x3d:
// End of play
if (_uart == _UART_0){
if (_playing_0) {
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Finished, uart: %d"), _uart);
#endif
_playing_0 = false;
}
} else { // uart 1 finished playing
if (_playing_1) {
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Finished, uart: %d"), _uart);
#endif
_playing_1 = false;
}
}
break;
case 0x40:
// Error codes; 1: Module Busy
if (_uart == _UART_0){
DIAG(F("I2CDFPlayer: Error %d returned from device, uart: %d"), c, _uart);
_playing_0 = false;
} else { // uart 1 error message
DIAG(F("I2CDFPlayer: Error %d returned from device, uart: %d"), c, _uart);
_playing_1 = false;
}
break;
}
ok = true;
break;
case 4: case 5: case 7: case 8:
ok = true; // Skip over these bytes in message.
break;
case 9:
if (c==0xef) { // Message finished
if(_uart == _UART_0){
_retryCounter_0 = RETRYCOUNT_INIT; // reset the retry counter as we have received a valid packet
} else { //uart 1
_retryCounter_1 = RETRYCOUNT_INIT; // reset the retry counter as we have received a valid packet
}
}
break;
default:
break;
}
if (ok){
_inputIndex++; // character as expected, so increment index
RX_BUFFER --; // Decrease FIFO_RX_LEVEL with each character read from _inbuffer[_inputIndex]
} else {
_inputIndex = 0; // otherwise reset.
RX_BUFFER = 0;
}
}
RX_BUFFER = 0; //Set to 0, we'll read a new RX FIFO level again
}
// Send any commands that need to be sent
void processOutgoing(unsigned long currentMicros, uint8_t _uart) {
// When two commands are sent in quick succession, the device will often fail to
// execute one. Testing has indicated that a delay of 100ms or more is required
// between successive commands to get reliable operation.
// If 100ms has elapsed since the last thing sent, then check if there's some output to do.
if(_uart == _UART_0){
if (((int32_t)currentMicros - _commandSendTime_0) > 100000) {
if ( _resetCmd_0 == true){
sendPacket(0x0C,0,0, _uart);
_resetCmd_0 = false;
} else if(_volCmd_0 == true) { // do the volme before palying a track
if(_requestedVolumeLevel_0 >= 0 && _requestedVolumeLevel_0 <= 30){
_currentVolume_0 = _requestedVolumeLevel_0; // If _requestedVolumeLevel is out of range, sent _currentV1olume
}
sendPacket(0x06, 0x00, _currentVolume_0, _uart);
_volCmd_0 = false;
} else if (_playCmd_0 == true) {
// Change song
if (_requestedSong_0 != -1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: _requestedVolumeLevel_0: %u, _requestedSong_0: %u, _currentFolder_0: %u _playCmd_0: 0x%x"), _requestedVolumeLevel_0, _requestedSong_0, _currentFolder_0, _playCmd_0);
#endif
sendPacket(0x0F, _currentFolder_0, _requestedSong_0, _uart); // audio file in folder
_requestedSong_0 = -1;
_playCmd_0 = false;
}
} //else if (_requestedSong_0 == 0) {
else if (_stopplayCmd_0 == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd_0: 0x%x"), _stopplayCmd_0);
#endif
sendPacket(0x16, 0x00, 0x00, _uart); // Stop playing
_requestedSong_0 = -1;
_repeat_0 = false; // reset repeat for uart 0
_stopplayCmd_0 = false;
} else if (_folderCmd_0 == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Folder: _folderCmd_0: 0x%x, _requestedFolder_0: %d"), _stopplayCmd_0, _requestedFolder_0);
#endif
if (_currentFolder_0 != _requestedFolder_0){
_currentFolder_0 = _requestedFolder_0;
}
_folderCmd_0 = false;
} else if (_repeatCmd_0 == true) {
if(_repeat_0 == false) { // No repeat play currently
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd_0: 0x%x, _requestedSong_0: %d, _repeat_0: 0x0%x"), _repeatCmd_0, _requestedSong_0, _repeat_0);
#endif
sendPacket(0x08, 0x00, _requestedSong_0, _uart); // repeat playing audio file in root folder
_requestedSong_0 = -1;
_repeat_0 = true;
}
_repeatCmd_0= false;
} else if (_daconCmd_0 == true) { // Always turn DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: DACON: _daconCmd_0: 0x%x"), _daconCmd_0);
#endif
sendPacket(0x1A,0,0x00, _uart);
_daconCmd_0 = false;
} else if (_eqCmd_0 == true){ // Set Equalizer, values 0x00 - 0x05
if (_currentEQvalue_0 != _requestedEQValue_0){
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: EQ: _eqCmd_0: 0x%x, _currentEQvalue_0: 0x0%x, _requestedEQValue_0: 0x0%x"), _eqCmd_0, _currentEQvalue_0, _requestedEQValue_0);
#endif
_currentEQvalue_0 = _requestedEQValue_0;
sendPacket(0x07,0x00,_currentEQvalue_0, _uart);
}
_eqCmd_0 = false;
} else if (_setamCmd_0 == true){ // Set Audio mixer channel
setGPIO(_uart); // Set the audio mixer channel
_setamCmd_0 = false;
} else if ((int32_t)currentMicros - _commandSendTime_0 > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, uart: %d") , _uart);
#endif
sendPacket(0x42,0,0, _uart);
if (!_awaitingResponse_0) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse_0: 0x0%x, , uart: %d"), _awaitingResponse_0, _uart);
#endif
_timeoutTime_0 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse_0 = true;
}
}
}
} else if(_uart == _UART_1){
if (((int32_t)currentMicros - _commandSendTime_1) > 100000) {
if ( _resetCmd_1 == true){
sendPacket(0x0C,0,0, _uart);
_resetCmd_1 = false;
} else if(_volCmd_1 == true) { // do the volme before palying a track
if(_requestedVolumeLevel_1 >= 0 && _requestedVolumeLevel_1 <= 30){
_currentVolume_1 = _requestedVolumeLevel_1; // If _requestedVolumeLevel is out of range, sent _currentV1olume
}
sendPacket(0x06, 0x00, _currentVolume_1, _uart);
_volCmd_1 = false;
} else if (_playCmd_1 == true) {
// Change song
if (_requestedSong_1 != -1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: _requestedVolumeLevel_1: %u, _requestedSong_1: %u, _currentFolder_1: %u _playCmd_1: 0x%x"), _requestedVolumeLevel_1, _requestedSong_1, _currentFolder_1, _playCmd_1);
#endif
sendPacket(0x0F, _currentFolder_1, _requestedSong_1, _uart); // audio file in folder
_requestedSong_1 = -1;
_playCmd_1 = false;
}
} //else if (_requestedSong_0 == 0) {
else if (_stopplayCmd_1 == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Stop playing: _stopplayCmd_1: 0x%x"), _stopplayCmd_1);
#endif
sendPacket(0x16, 0x00, 0x00, _uart); // Stop playing
_requestedSong_1 = -1;
_repeat_1 = false; // reset repeat for uart 0
_stopplayCmd_1 = false;
} else if (_folderCmd_1 == true) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Folder: _folderCmd_1: 0x%x, _requestedFolder_1: %d"), _stopplayCmd_1, _requestedFolder_1);
#endif
if (_currentFolder_1 != _requestedFolder_1){
_currentFolder_1 = _requestedFolder_1;
}
_folderCmd_1 = false;
} else if (_repeatCmd_1 == true) {
if(_repeat_1 == false) { // No repeat play currently
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Repeat: _repeatCmd_1: 0x%x, _requestedSong_1: %d, _repeat_1: 0x0%x"), _repeatCmd_1, _requestedSong_1, _repeat_1);
#endif
sendPacket(0x08, 0x00, _requestedSong_0, _uart); // repeat playing audio file in root folder
_requestedSong_1 = -1;
_repeat_1 = true;
}
_repeatCmd_1= false;
} else if (_daconCmd_1 == true) { // Always turn DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: DACON: _daconCmd_1: 0x%x"), _daconCmd_1);
#endif
sendPacket(0x1A,0,0x00, _uart);
_daconCmd_1 = false;
} else if (_eqCmd_1 == true){ // Set Equalizer, values 0x00 - 0x05
if (_currentEQvalue_1 != _requestedEQValue_1){
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: EQ: _eqCmd_1: 0x%x, _currentEQvalue_1: 0x0%x, _requestedEQValue_1: 0x0%x"), _eqCmd_1, _currentEQvalue_1, _requestedEQValue_1);
#endif
_currentEQvalue_1 = _requestedEQValue_1;
sendPacket(0x07,0x00,_currentEQvalue_0, _uart);
}
_eqCmd_1 = false;
} else if (_setamCmd_1 == true){ // Set Audio mixer channel
setGPIO(_uart); // Set the audio mixer channel
_setamCmd_1 = false;
} else if ((int32_t)currentMicros - _commandSendTime_1 > 1000000) {
// Poll device every second that other commands aren't being sent,
// to check if it's still connected and responding.
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, uart: %d") , _uart);
#endif
sendPacket(0x42,0,0, _uart);
if (!_awaitingResponse_1) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: Send keepalive, _awaitingResponse_1: 0x0%x, , uart: %d"), _awaitingResponse_1, _uart);
#endif
_timeoutTime_1 = currentMicros + 5000000UL; // Timeout if no response within 5 seconds
_awaitingResponse_1 = true;
}
}
}
}
}
// Write to a vPin will do nothing
void _write(VPIN vpin, int value) override {
if (_deviceState_0 == DEVSTATE_FAILED) return;
if (_deviceState_1 == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: Writing to any vPin not supported"));
#endif
}
// WriteAnalogue on first pin uses the nominated value as a file number to start playing, if file number > 0.
// Volume may be specified as second parameter to writeAnalogue.
// If value is zero, the player stops playing.
// WriteAnalogue on second pin sets the output volume.
//
//
//void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t=0) override {
void _writeAnalogue(VPIN vpin, int value, uint8_t volume=0, uint16_t cmd=0) override {
if (_deviceState_0 == DEVSTATE_FAILED) return;
if (_deviceState_1 == DEVSTATE_FAILED) return;
#ifdef DIAG_IO
DIAG(F("I2CDFPlayer: VPIN:%u FileNo:%d Volume:%d Command:0x%x"), vpin, value, volume, cmd);
#endif
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // Enhanced DFPlayer commands, vPin 0 for uart 0
// Read command and value
switch (cmd){
case PLAY:
_playCmd_0 = true;
_volCmd_0 = true;
_requestedSong_0 = value;
_requestedVolumeLevel_0 = volume;
_playing_0 = true;
break;
case VOL:
_volCmd_0 = true;
_requestedVolumeLevel_0 = volume;
break;
case FOLDER:
_folderCmd_0 = true;
if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1
_requestedFolder_0 = 0x01; // if outside range, default to folder 01
} else {
_requestedFolder_0 = volume;
}
break;
case REPEATPLAY: // Need to check if _repeat == true, if so do nothing
if (_repeat_0 == false) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat_0: 0x0%x, value: %d _repeatCmd_0: 0x%x"), _repeat_0, value, _repeatCmd_0);
#endif
_repeatCmd_0 = true;
_requestedSong_0 = value;
_requestedVolumeLevel_0 = volume;
_playing_0 = true;
}
break;
case STOPPLAY:
_stopplayCmd_0 = true;
break;
case EQ:
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
#endif
_eqCmd_0 = true;
if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL
_requestedEQValue_0 = NORMAL;
} else { // Valid EQ parameter range
_requestedEQValue_0 = volume;
}
break;
case RESET: // Reset the DFPlayer module
_resetCmd_0 = true;
break;
case DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
#endif
_daconCmd_0 = true;
break;
case SETAM: // Set the audio mixer channel to 1 or 2
_setamCmd_0 = true;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: value: %d, cmd: 0x%x"), value, cmd);
#endif
if (volume <= 0 || volume > 2) { // If out of range, default to 1
_audioMixer_0 = 1;
} else { // Valid SETAM parameter in range
_audioMixer_0 = volume; // _audioMixer_0 valid values 1 or 2
}
break;
default:
break;
}
} else if(pin == 1){ // Enhanced DFPlayer commands, vPin 0 for uart 0
switch (cmd){
case PLAY:
_playCmd_1 = true;
_volCmd_1 = true;
_requestedSong_1 = value;
_requestedVolumeLevel_1 = volume;
_playing_1 = true;
break;
case VOL:
_volCmd_1 = true;
_requestedVolumeLevel_1 = volume;
break;
case FOLDER:
_folderCmd_1 = true;
if (volume <= 0 || volume > 99){ // Range checking, valid values 1-99, else default to 1
_requestedFolder_1 = 0x01; // if outside range, default to folder 01
} else {
_requestedFolder_1 = volume;
}
break;
case REPEATPLAY: // Need to check if _repeat == true, if so do nothing
if (_repeat_1 == false) {
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog Repeat: _repeat_1: 0x0%x, value: %d _repeatCmd_1: 0x%x"), _repeat_1, value, _repeatCmd_1);
#endif
_repeatCmd_1 = true;
_requestedSong_1 = value;
_requestedVolumeLevel_1 = volume;
_playing_1 = true;
}
break;
case STOPPLAY:
_stopplayCmd_1 = true;
break;
case EQ:
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WriteAnalog EQ: cmd: 0x%x, EQ value: 0x%x"), cmd, volume);
#endif
_eqCmd_1 = true;
if (volume <= 0 || volume > 5) { // If out of range, default to NORMAL
_requestedEQValue_1 = NORMAL;
} else { // Valid EQ parameter range
_requestedEQValue_1 = volume;
}
break;
case RESET: // Reset the DFPlayer module
_resetCmd_1 = true;
break;
case DACON: // Works, but without the DACOFF command limited value, except when not relying on DFPlayer default to turn the DAC on
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog DACON: cmd: 0x%x"), cmd);
#endif
_daconCmd_1 = true;
break;
case SETAM: // Set the audio mixer channel to 1 or 2
_setamCmd_1 = true;
#ifdef DIAG_I2CDFplayer_playing
DIAG(F("I2CDFPlayer: WrtieAnalog SETAM: value: %d, cmd: 0x%x"), value, cmd);
#endif
if (volume <= 0 || volume > 2) { // If out of range, default to 1
_audioMixer_1 = 1;
} else { // Valid SETAM parameter in range
_audioMixer_1 = volume; // _audioMixer_0 valid values 1 or 2
}
break;
default:
break;
}
}
}
// A read on any pin indicates if the player is still playing.
int _read(VPIN vpin) override {
if (_deviceState_0 == DEVSTATE_FAILED) return false;
if (_deviceState_1 == DEVSTATE_FAILED) return false;
uint8_t pin = vpin - _firstVpin;
if (pin == 0) { // return _playing for uart 0
return _playing_0;
} else if (pin == 1) { // return _playing for uart 1
return _playing_1;
}
}
void _display() override {
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S, UART: %d"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState_0==DEVSTATE_FAILED) ? F("OFFLINE") : F(""), _UART_0);
DIAG(F("I2CDFPlayer Configured on Vpins:%u-%u %S, UART: %d"), _firstVpin, _firstVpin+_nPins-1,
(_deviceState_1==DEVSTATE_FAILED) ? F("OFFLINE") : F(""), _UART_1);
}
private:
// DFPlayer command frame
// 7E FF 06 0F 00 01 01 xx xx EF
// 0 -> 7E is start code
// 1 -> FF is version
// 2 -> 06 is length
// 3 -> 0F is command
// 4 -> 00 is no receive
// 5~6 -> 01 01 is argument
// 7~8 -> checksum = 0 - ( FF+06+0F+00+01+01 )
// 9 -> EF is end code
// TODO rewite sendPacket for both uarts -- Done
void sendPacket(uint8_t command, uint8_t arg1 = 0, uint8_t arg2 = 0, uint8_t _uart = 0) {
if(_uart == _UART_0){
FIFO_TX_LEVEL_0 = 0; // Reset FIFO_TX_LEVEL_0
} else {
FIFO_TX_LEVEL_1 = 0; // Reset FIFO_TX_LEVEL_1
}
TX_fifo_lvl(_uart); // Now check for TX FIFO level
uint8_t out[] = {
0x7E,
0xFF,
06,
command,
00,
//static_cast<uint8_t>(arg >> 8),
//static_cast<uint8_t>(arg & 0x00ff),
arg1,
arg2,
00,
00,
0xEF };
setChecksum(out);
// Prepend the DFPlayer command with REG address and UART Channel in _outbuffer or _outbuffer
_outbuffer[0] = 0x00; // empty _outbuffer[0] just in case
if (_uart==_UART_0){
_outbuffer[0] = REG_THR << 3 | _uart << 1; //TX FIFO and UART Channel
for ( int i = 1; i < sizeof(out)+1 ; i++){
_outbuffer[i] = out[i-1];
}
} else if (_uart==_UART_1){
_outbuffer[0] = REG_THR << 3 | _uart << 1; //TX FIFO and UART Channel
for ( int i = 1; i < sizeof(out)+1 ; i++){
_outbuffer[i] = out[i-1];
}
}
if (_uart==_UART_0){
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s Sent packet function, UART: %d"), _I2CAddress.toString(), _uart);
for (int i = 0; i < sizeof _outbuffer; i++){
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
}
#endif
} else if (_uart==_UART_1){
#ifdef DIAG_I2CDFplayer_data
DIAG(F("SC16IS752: I2C: %s Sent packet function, UART: %d"), _I2CAddress.toString(), _uart);
for (int i = 0; i < sizeof _outbuffer; i++){
DIAG(F("SC16IS752: Data _outbuffer[0x%x]: 0x%x"), i, _outbuffer[i]);
}
#endif
}
//TX_fifo_lvl(_uart); // wrong place, this will overwrite _oubuffer[0], moved to beginning of function
if(_uart == _UART_0){
if(FIFO_TX_LEVEL_0 > 10){ //FIFO uart 0 is empty, proceed
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb); // ************************* use this once buffer issue is solved *********************
_commandSendTime_0 = micros();
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: %d"), _I2CAddress.toString(), _uart);
#endif
} else {
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: %d"), _I2CAddress.toString(), _uart);
_deviceState_0 = DEVSTATE_FAILED; // This should not happen, _devstate_0 is for both UART 0
}
} else { //Handle uart 1
if(FIFO_TX_LEVEL_1 > 10){ //FIFO uart 1 is empty, proceed
I2CManager.write(_I2CAddress, _outbuffer, sizeof(_outbuffer), &_rb); // ************************* use this once buffer issue is solved *********************
_commandSendTime_1 = micros();
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: I2C: %s data transmit complete on UART: %d"), _I2CAddress.toString(), _uart);
#endif
} else {
DIAG(F("I2CDFPlayer at: %s, TX FIFO not empty on UART: %d"), _I2CAddress.toString(), _uart);
_deviceState_1 = DEVSTATE_FAILED; // This should not happen, _devstate is for both UART 1
}
}
}
uint16_t calcChecksum(uint8_t* packet)
{
uint16_t sum = 0;
for (int i = 1; i < 7; i++)
{
sum += packet[i];
}
return -sum;
}
void setChecksum(uint8_t* out)
{
uint16_t sum = calcChecksum(out);
out[7] = (sum >> 8);
out[8] = (sum & 0xff);
}
// SC16IS752 functions
// Initialise SC16IS752 only for this uart
// First a software reset
// Enable FIFO and clear TX & RX FIFO
// Need to set the following registers
// IOCONTROL set bit 1 and 2 to 0 indicating that they are GPIO
// IODIR set all bit to 1 indicating al are output
// IOSTATE set only bit 0 to 1 for UART 0, or only bit 1 for UART 1 //
// LCR bit 7=0 divisor latch (clock division registers DLH & DLL, they store 16 bit divisor),
// WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE
// MCR bit 7=0 clock divisor devide-by-1 clock input
// DLH most significant part of divisor
// DLL least significant part of divisor
//
// BAUD_RATE, WORD_LEN, STOP_BIT, PARITY_ENA and PARITY_TYPE have been defined and initialized
//
void Init_SC16IS752(uint8_t _uart){ // Return value is in _deviceState_0 or _deviceState_1
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: Initialize I2C: %s , UART: %d"), _I2CAddress.toString(), _uart);
#endif
UART_WriteRegister(REG_IOCONTROL, 0x08, _uart); // UART Software reset
UART_ReadRegister(REG_FCR, _uart);
UART_WriteRegister(REG_FCR, 0x07, _uart); // Reset FIFO, clear RX & TX FIFO
UART_WriteRegister(REG_MCR, 0x00, _uart); // Set MCR to all 0, includes Clock divisor
TEMP_REG_VAL = 0x80 | WORD_LEN | STOP_BIT | PARITY_ENA | PARITY_TYPE;
UART_WriteRegister(REG_LCR, TEMP_REG_VAL, _uart); // Divisor latch enabled
uint16_t _divisor = (_sc16is752_xtal_freq/PRESCALER)/(BAUD_RATE * 16); // Calculate _divisor for baudrate
UART_WriteRegister(REG_DLL, (uint8_t)_divisor, _uart); // Write DLL
UART_WriteRegister(REG_DLH, (uint8_t)(_divisor >> 8), _uart); // Write DLH
UART_ReadRegister(REG_LCR, _uart); // Read LCR, _inbuffer_x[0] has value, then AND with 0x7F to set bit 7 to 0
if (_uart == _UART_0){
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit uart 0
} else {
if(_uart == _UART_1){
TEMP_REG_VAL = _inbuffer[0] & 0x7F; // Disable Divisor latch enabled bit uart 1
}
}
UART_WriteRegister(REG_LCR, TEMP_REG_VAL, _uart); // Divisor latch disabled
UART_WriteRegister(REG_IOCONTROL, 0x00, _uart); // Set pins to GPIO mode
UART_WriteRegister(REG_IODIR, 0xFF, _uart); // Set all pins as output
setGPIO(_uart); // Set the audio mixer channel, is uart independent
status = _rb.status;
if(_uart == _UART_0){ // only execute if _UART_0
if (status != I2C_STATUS_OK) {
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
_deviceState_0 = DEVSTATE_FAILED;
} else {
#ifdef DIAG_IO
DIAG(F("SC16IS752: I2C: %s, _rb.status: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
#endif
_deviceState_0 = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
}
} else { // uart 1
if (status != I2C_STATUS_OK) {
DIAG(F("SC16IS752: I2C: %s failed %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
_deviceState_1 = DEVSTATE_FAILED;
} else {
#ifdef DIAG_IO
DIAG(F("SC16IS752: I2C: %s, _rb.status: %S"), _I2CAddress.toString(), I2CManager.getErrorMessage(status));
#endif
_deviceState_1 = DEVSTATE_NORMAL; // If I2C state is OK, then proceed to initialize DFPlayer
}
}
}
// Read the Receive FIFO Level register (RXLVL), return a single unsigned integer
// of nr of characters in the RX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40) Only display if RX FIFO has data
// The RX fifo level is used to check if there are enough bytes to process a frame
void RX_fifo_lvl(uint8_t _uart){
UART_ReadRegister(REG_RXLV, _uart);
if (_uart == _UART_0){
FIFO_RX_LEVEL_0 = _inbuffer[0];
} else { // uart 1
FIFO_RX_LEVEL_1 = _inbuffer[0];
}
#ifdef DIAG_I2CDFplayer
if (_uart == _UART_0){
if (FIFO_RX_LEVEL_0 > 0){
//if (FIFO_RX_LEVEL_0 > 0 && FIFO_RX_LEVEL_0 < 10){ // uncomment if only RX lvl between 1-9 is required
DIAG(F("SC16IS752: At I2C: %s, UART: 0d%d, FIFO_RX_LEVEL_0: 0d%d"), _I2CAddress.toString(), _uart, _inbuffer[0]);
}
} else { // uart 1
if (FIFO_RX_LEVEL_1 > 0){
//if (FIFO_RX_LEVEL_1 > 0 && FIFO_RX_LEVEL_1 < 10){ // uncomment if only RX lvl between 1-9 is required
DIAG(F("SC16IS752: At I2C: %s, UART: 0d%d, FIFO_RX_LEVEL_1: 0d%d"), _I2CAddress.toString(), _uart, _inbuffer[0]);
}
}
#endif
}
// Read the Tranmit FIFO Level register (TXLVL), return a single unsigned integer
// of nr characters free in the TX FIFO, bit 6:0, 7 not used, set to zero
// value from 0 (0x00) to 64 (0x40)
//
void TX_fifo_lvl(uint8_t _uart){
UART_ReadRegister(REG_TXLV, _uart);
if(_uart == _UART_0){
FIFO_TX_LEVEL_0 = _inbuffer[0];
} else {
FIFO_TX_LEVEL_1 = _inbuffer[0];
}
#ifdef DIAG_I2CDFplayer
if(_uart == _UART_0){
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0d%d, FIFO_TX_LEVEL_0: 0d%d"), _I2CAddress.toString(), _uart, FIFO_TX_LEVEL_0);
} else {
// DIAG(F("SC16IS752: At I2C: %s, UART channel: 0d%d, FIFO_TX_LEVEL_1: 0d%d"), _I2CAddress.toString(), _uart, FIFO_TX_LEVEL_1);
}
#endif
}
// When a frame is transmitted from the DFPlayer to the serial port, and at the same time the CS is sending a 42 query
// the following two frames from the DFPlayer are corrupt. This result in the receive buffer being out of sync and the
// CS will complain and generate a timeout.
// The RX fifo has corrupt data and need to be flushed, this function does that
//
void resetRX_fifo(uint8_t _uart){
#ifdef DIAG_I2CDFplayer
DIAG(F("SC16IS752: At I2C: %s, UART: %d, RX fifo reset"), _I2CAddress.toString(), _uart);
#endif
//TEMP_REG_VAL = 0x03; // Reset RX fifo
UART_WriteRegister(REG_FCR, 0x03, _uart);
}
// Set or reset GPIO pin 0 and 1 depending on the UART ch
// This function may be modified in a future release to enable all 8 pins to be set or reset with EX-Rail
// for various auxilary functions
void setGPIO(uint8_t _uart){
UART_ReadRegister(REG_IOSTATE, _uart); // Get the current GPIO pins state from the IOSTATE register, independant of uart
// _inbuffer for uart 0, _inbuffer for uart 1
if (_audioMixer_0 == 1){ // set to audio mixer 1
if (_uart == _UART_0){
TEMP_REG_VAL = _inbuffer[0];
TEMP_REG_VAL |= (0x01 << _uart); //Set GPIO pin 0 to high
_setamCmd_0 = false;
} else { // must be UART 1
TEMP_REG_VAL = _inbuffer[0];
TEMP_REG_VAL |= (0x01 << _uart); //Set GPIO pin 1 to high
_setamCmd_1 = false;
}
} else { // set to audio mixer 2
if (_uart == _UART_0){
TEMP_REG_VAL = _inbuffer[0];
TEMP_REG_VAL &= ~(0x01 << _uart); //Set GPIO pin 0 to Low
_setamCmd_0 = false;
} else { // must be UART 1
TEMP_REG_VAL = _inbuffer[0];
TEMP_REG_VAL &= ~(0x01 << _uart); //Set GPIO pin 1 to Low
_setamCmd_1 = false;
}
}
UART_WriteRegister(REG_IOSTATE, TEMP_REG_VAL, _uart);
}
//void UART_WriteRegister(I2CAddress _I2CAddress, uint8_t _UART_CH, uint8_t UART_REG, uint8_t Val, uint8 _uart, I2CRB &_rb){
void UART_WriteRegister(uint8_t UART_REG, uint8_t Val, uint8_t _uart){
if (_uart == _UART_0){
_outbuffer[0] = UART_REG << 3 | _uart << 1;
_outbuffer[1] = Val;
I2CManager.write(_I2CAddress, _outbuffer, 2);
} else {
if (_uart == _UART_1){
_outbuffer[0] = UART_REG << 3 | _uart << 1;
_outbuffer[1] = Val;
I2CManager.write(_I2CAddress, _outbuffer, 2);
}
}
#ifdef DIAG_I2CDFplayer_reg
if(_uart == _UART_0){
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _outbuffer[1]);
} else {
if(_uart == _UART_1){
DIAG(F("SC16IS752: Write register at I2C: %s, UART channel: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _outbuffer[1]);
}
}
#endif
}
void UART_ReadRegister(uint8_t UART_REG, uint8_t _uart){
if (_uart == _UART_0){
_outbuffer[0] = UART_REG << 3 | _uart << 1; // _outbuffer[0] has now UART_REG and UART
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
} else if (_uart == _UART_1){
_outbuffer[0] = UART_REG << 3 | _uart << 1; // _outbuffer[0] has now UART_REG and UART
I2CManager.read(_I2CAddress, _inbuffer, 1, _outbuffer, 1);
}
// _inbuffer has the REG data
#ifdef DIAG_I2CDFplayer_reg
if (_uart == _UART_0){
DIAG(F("SC16IS752: Read register at I2C: %s, UART: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _inbuffer[0]);
} else {
DIAG(F("SC16IS752: Read register at I2C: %s, UART: %d, Register: 0x%x, Data: 0b%b"), _I2CAddress.toString(), _uart, UART_REG, _inbuffer[0]);
}
#endif
}
// SC16IS752 General register set (from the datasheet)
enum : uint8_t{
REG_RHR = 0x00, // FIFO Read
REG_THR = 0x00, // FIFO Write
REG_IER = 0x01, // Interrupt Enable Register R/W
REG_FCR = 0x02, // FIFO Control Register Write
REG_IIR = 0x02, // Interrupt Identification Register Read
REG_LCR = 0x03, // Line Control Register R/W
REG_MCR = 0x04, // Modem Control Register R/W
REG_LSR = 0x05, // Line Status Register Read
REG_MSR = 0x06, // Modem Status Register Read
REG_SPR = 0x07, // Scratchpad Register R/W
REG_TCR = 0x06, // Transmission Control Register R/W
REG_TLR = 0x07, // Trigger Level Register R/W
REG_TXLV = 0x08, // Transmitter FIFO Level register Read
REG_RXLV = 0x09, // Receiver FIFO Level register Read
REG_IODIR = 0x0A, // Programmable I/O pins Direction register R/W
REG_IOSTATE = 0x0B, // Programmable I/O pins State register R/W
REG_IOINTENA = 0x0C, // I/O Interrupt Enable register R/W
REG_IOCONTROL = 0x0E, // I/O Control register R/W
REG_EFCR = 0x0F, // Extra Features Control Register R/W
};
// SC16IS752 Special register set
enum : uint8_t{
REG_DLL = 0x00, // Division registers R/W
REG_DLH = 0x01, // Division registers R/W
};
// SC16IS752 Enhanced regiter set
enum : uint8_t{
REG_EFR = 0X02, // Enhanced Features Register R/W
REG_XON1 = 0x04, // R/W
REG_XON2 = 0x05, // R/W
REG_XOFF1 = 0x06, // R/W
REG_XOFF2 = 0x07, // R/W
};
// DFPlayer commands and values
enum : uint8_t{
PLAY = 0x0F,
VOL = 0x06,
FOLDER = 0x2B, // Not a DFPlayer command, used to set folder nr where audio file is
REPEATPLAY = 0x08,
STOPPLAY = 0x16,
EQ = 0x07, // Set equaliser, require parameter NORMAL, POP, ROCK, JAZZ, CLASSIC or BASS
RESET = 0x0C,
DACON = 0x1A,
SETAM = 0x2A, // Set audio mixer 1 or 2 for this DFPLayer
NORMAL = 0x00, // Equalizer parameters
POP = 0x01,
ROCK = 0x02,
JAZZ = 0x03,
CLASSIC = 0x04,
BASS = 0x05,
};
};
#endif // IO_I2CDFPlayer_h