mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-01-28 21:23:06 +01:00
916 lines
30 KiB
C++
916 lines
30 KiB
C++
/*
|
||
* © 2021 Neil McKechnie
|
||
* © 2021 Mike S
|
||
* © 2021 Fred Decker
|
||
* © 2021 Herb Morton
|
||
* © 2020-2022 Harald Barth
|
||
* © 2020-2021 M Steve Todd
|
||
* © 2020-2021 Chris Harlow
|
||
* All rights reserved.
|
||
*
|
||
* This file is part of DCC-EX
|
||
*
|
||
* This is free software: you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation, either version 3 of the License, or
|
||
* (at your option) any later version.
|
||
*
|
||
* It is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
||
*/
|
||
#include "DIAG.h"
|
||
#include "DCC.h"
|
||
#include "DCCWaveform.h"
|
||
#ifndef DISABLE_EEPROM
|
||
#include "EEStore.h"
|
||
#endif
|
||
#include "GITHUB_SHA.h"
|
||
#include "version.h"
|
||
#include "FSH.h"
|
||
#include "IODevice.h"
|
||
#include "EXRAIL2.h"
|
||
#include "CommandDistributor.h"
|
||
#include "TrackManager.h"
|
||
#include "DCCTimer.h"
|
||
|
||
// This module is responsible for converting API calls into
|
||
// messages to be sent to the waveform generator.
|
||
// It has no visibility of the hardware, timers, interrupts
|
||
// nor of the waveform issues such as preambles, start bits checksums or cutouts.
|
||
//
|
||
// Nor should it have to deal with JMRI responsess other than the OK/FAIL
|
||
// or cv value returned. I will move that back to the JMRI interface later
|
||
//
|
||
// The interface to the waveform generator is narrowed down to merely:
|
||
// Scheduling a message on the prog or main track using a function
|
||
// Obtaining ACKs from the prog track using a function
|
||
// There are no volatiles here.
|
||
|
||
const byte FN_GROUP_1=0x01;
|
||
const byte FN_GROUP_2=0x02;
|
||
const byte FN_GROUP_3=0x04;
|
||
const byte FN_GROUP_4=0x08;
|
||
const byte FN_GROUP_5=0x10;
|
||
|
||
FSH* DCC::shieldName=NULL;
|
||
byte DCC::globalSpeedsteps=128;
|
||
|
||
void DCC::begin() {
|
||
StringFormatter::send(&USB_SERIAL,F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), shieldName, F(GITHUB_SHA));
|
||
#ifndef DISABLE_EEPROM
|
||
// Load stuff from EEprom
|
||
(void)EEPROM; // tell compiler not to warn this is unused
|
||
EEStore::init();
|
||
#endif
|
||
#ifndef ARDUINO_ARCH_ESP32 /* On ESP32 started in TrackManager::setTrackMode() */
|
||
DCCWaveform::begin();
|
||
#endif
|
||
}
|
||
|
||
|
||
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {
|
||
byte speedCode = (tSpeed & 0x7F) + tDirection * 128;
|
||
setThrottle2(cab, speedCode);
|
||
TrackManager::setDCSignal(cab,speedCode); // in case this is a dcc track on this addr
|
||
// retain speed for loco reminders
|
||
updateLocoReminder(cab, speedCode );
|
||
}
|
||
|
||
void DCC::setThrottle2( uint16_t cab, byte speedCode) {
|
||
|
||
uint8_t b[4];
|
||
uint8_t nB = 0;
|
||
// DIAG(F("setSpeedInternal %d %x"),cab,speedCode);
|
||
|
||
if (cab > HIGHEST_SHORT_ADDR)
|
||
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
||
b[nB++] = lowByte(cab);
|
||
|
||
if (globalSpeedsteps <= 28) {
|
||
|
||
uint8_t speed128 = speedCode & 0x7F;
|
||
uint8_t speed28;
|
||
uint8_t code28;
|
||
|
||
if (speed128 == 0 || speed128 == 1) { // stop or emergency stop
|
||
code28 = speed128;
|
||
} else {
|
||
speed28= (speed128*10+36)/46; // convert 2-127 to 1-28
|
||
/*
|
||
if (globalSpeedsteps <= 14) // Don't want to do 14 steps, to get F0 there is ugly
|
||
code28 = (speed28+3)/2 | (Value of F0); // convert 1-28 to DCC 14 step speed code
|
||
else
|
||
*/
|
||
code28 = (speed28+3)/2 | ( (speed28 & 1) ? 0 : 0b00010000 ); // convert 1-28 to DCC 28 step speed code
|
||
}
|
||
// Construct command byte from:
|
||
// command speed direction
|
||
b[nB++] = 0b01000000 | code28 | ((speedCode & 0x80) ? 0b00100000 : 0);
|
||
|
||
} else { // 128 speedsteps
|
||
|
||
b[nB++] = SET_SPEED; // 128-step speed control byte
|
||
b[nB++] = speedCode; // for encoding see setThrottle
|
||
|
||
}
|
||
|
||
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
|
||
}
|
||
|
||
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2, byte count) {
|
||
// DIAG(F("setFunctionInternal %d %x %x"),cab,byte1,byte2);
|
||
byte b[4];
|
||
byte nB = 0;
|
||
|
||
if (cab > HIGHEST_SHORT_ADDR)
|
||
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
||
b[nB++] = lowByte(cab);
|
||
if (byte1!=0) b[nB++] = byte1;
|
||
b[nB++] = byte2;
|
||
|
||
DCCWaveform::mainTrack.schedulePacket(b, nB, count);
|
||
}
|
||
|
||
// returns speed steps 0 to 127 (1 == emergency stop)
|
||
// or -1 on "loco not found"
|
||
int8_t DCC::getThrottleSpeed(int cab) {
|
||
int reg=lookupSpeedTable(cab);
|
||
if (reg<0) return -1;
|
||
return speedTable[reg].speedCode & 0x7F;
|
||
}
|
||
|
||
// returns speed code byte
|
||
// or 128 (speed 0, dir forward) on "loco not found".
|
||
uint8_t DCC::getThrottleSpeedByte(int cab) {
|
||
int reg=lookupSpeedTable(cab);
|
||
if (reg<0)
|
||
return 128;
|
||
return speedTable[reg].speedCode;
|
||
}
|
||
|
||
// returns 0 to 7 for frequency
|
||
uint8_t DCC::getThrottleFrequency(int cab) {
|
||
#if defined(ARDUINO_AVR_UNO)
|
||
(void)cab;
|
||
return 0;
|
||
#else
|
||
int reg=lookupSpeedTable(cab);
|
||
if (reg<0)
|
||
return 0; // use default frequency
|
||
// shift out first 29 bits so we have the 3 "frequency bits" left
|
||
uint8_t res = (uint8_t)(speedTable[reg].functions >>29);
|
||
//DIAG(F("Speed table %d functions %l shifted %d"), reg, speedTable[reg].functions, res);
|
||
return res;
|
||
#endif
|
||
}
|
||
|
||
// returns direction on loco
|
||
// or true/forward on "loco not found"
|
||
bool DCC::getThrottleDirection(int cab) {
|
||
int reg=lookupSpeedTable(cab);
|
||
if (reg<0) return true;
|
||
return (speedTable[reg].speedCode & 0x80) !=0;
|
||
}
|
||
|
||
// Set function to value on or off
|
||
bool DCC::setFn( int cab, int16_t functionNumber, bool on) {
|
||
if (cab<=0 ) return false;
|
||
if (functionNumber < 0) return false;
|
||
|
||
if (functionNumber>28) {
|
||
//non reminding advanced binary bit set
|
||
byte b[5];
|
||
byte nB = 0;
|
||
if (cab > HIGHEST_SHORT_ADDR)
|
||
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
||
b[nB++] = lowByte(cab);
|
||
if (functionNumber <= 127) {
|
||
b[nB++] = 0b11011101; // Binary State Control Instruction short form
|
||
b[nB++] = functionNumber | (on ? 0x80 : 0);
|
||
}
|
||
else {
|
||
b[nB++] = 0b11000000; // Binary State Control Instruction long form
|
||
b[nB++] = (functionNumber & 0x7F) | (on ? 0x80 : 0); // low order bits and state flag
|
||
b[nB++] = functionNumber >>7 ; // high order bits
|
||
}
|
||
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
|
||
}
|
||
// We use the reminder table up to 28 for normal functions.
|
||
// We use 29 to 31 for DC frequency as well so up to 28
|
||
// are "real" functions and 29 to 31 are frequency bits
|
||
// controlled by function buttons
|
||
if (functionNumber > 31)
|
||
return true;
|
||
|
||
int reg = lookupSpeedTable(cab);
|
||
if (reg<0) return false;
|
||
|
||
// Take care of functions:
|
||
// Set state of function
|
||
uint32_t previous=speedTable[reg].functions;
|
||
uint32_t funcmask = (1UL<<functionNumber);
|
||
if (on) {
|
||
speedTable[reg].functions |= funcmask;
|
||
} else {
|
||
speedTable[reg].functions &= ~funcmask;
|
||
}
|
||
if (speedTable[reg].functions != previous) {
|
||
if (functionNumber <= 28)
|
||
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
|
||
CommandDistributor::broadcastLoco(reg);
|
||
}
|
||
return true;
|
||
}
|
||
|
||
// Flip function state (used from withrottle protocol)
|
||
void DCC::changeFn( int cab, int16_t functionNumber) {
|
||
if (cab<=0 || functionNumber>31) return;
|
||
int reg = lookupSpeedTable(cab);
|
||
if (reg<0) return;
|
||
unsigned long funcmask = (1UL<<functionNumber);
|
||
speedTable[reg].functions ^= funcmask;
|
||
if (functionNumber <= 28) {
|
||
updateGroupflags(speedTable[reg].groupFlags, functionNumber);
|
||
}
|
||
CommandDistributor::broadcastLoco(reg);
|
||
}
|
||
|
||
// Report function state (used from withrottle protocol)
|
||
// returns 0 false, 1 true or -1 for do not know
|
||
int8_t DCC::getFn( int cab, int16_t functionNumber) {
|
||
if (cab<=0 || functionNumber>31)
|
||
return -1; // unknown
|
||
int reg = lookupSpeedTable(cab);
|
||
if (reg<0)
|
||
return -1;
|
||
|
||
unsigned long funcmask = (1UL<<functionNumber);
|
||
return (speedTable[reg].functions & funcmask)? 1 : 0;
|
||
}
|
||
|
||
// Set the group flag to say we have touched the particular group.
|
||
// A group will be reminded only if it has been touched.
|
||
void DCC::updateGroupflags(byte & flags, int16_t functionNumber) {
|
||
byte groupMask;
|
||
if (functionNumber<=4) groupMask=FN_GROUP_1;
|
||
else if (functionNumber<=8) groupMask=FN_GROUP_2;
|
||
else if (functionNumber<=12) groupMask=FN_GROUP_3;
|
||
else if (functionNumber<=20) groupMask=FN_GROUP_4;
|
||
else groupMask=FN_GROUP_5;
|
||
flags |= groupMask;
|
||
}
|
||
|
||
uint32_t DCC::getFunctionMap(int cab) {
|
||
if (cab<=0) return 0; // unknown pretend all functions off
|
||
int reg = lookupSpeedTable(cab);
|
||
return (reg<0)?0:speedTable[reg].functions;
|
||
}
|
||
|
||
// saves DC frequency (0..3) in spare functions 29,30,31
|
||
void DCC::setDCFreq(int cab,byte freq) {
|
||
if (cab==0 || freq>3) return;
|
||
auto reg=lookupSpeedTable(cab,true);
|
||
// drop and replace F29,30,31 (top 3 bits)
|
||
auto newFunctions=speedTable[reg].functions & 0x1FFFFFFFUL;
|
||
if (freq==1) newFunctions |= (1UL<<29); // F29
|
||
else if (freq==2) newFunctions |= (1UL<<30); // F30
|
||
else if (freq==3) newFunctions |= (1UL<<31); // F31
|
||
if (newFunctions==speedTable[reg].functions) return; // no change
|
||
speedTable[reg].functions=newFunctions;
|
||
CommandDistributor::broadcastLoco(reg);
|
||
}
|
||
|
||
void DCC::setAccessory(int address, byte port, bool gate, byte onoff /*= 2*/) {
|
||
// onoff is tristate:
|
||
// 0 => send off packet
|
||
// 1 => send on packet
|
||
// >1 => send both on and off packets.
|
||
|
||
// An accessory has an address, 4 ports and 2 gates (coils) each. That's how
|
||
// the initial decoders were orgnized and that influenced how the DCC
|
||
// standard was made.
|
||
#ifdef DIAG_IO
|
||
DIAG(F("DCC::setAccessory(%d,%d,%d)"), address, port, gate);
|
||
#endif
|
||
// use masks to detect wrong values and do nothing
|
||
if(address != (address & 511))
|
||
return;
|
||
if(port != (port & 3))
|
||
return;
|
||
byte b[2];
|
||
|
||
// first byte is of the form 10AAAAAA, where AAAAAA represent 6 least signifcant bits of accessory address
|
||
// second byte is of the form 1AAACPPG, where C is 1 for on, PP the ports 0 to 3 and G the gate (coil).
|
||
b[0] = address % 64 + 128;
|
||
b[1] = ((((address / 64) % 8) << 4) + (port % 4 << 1) + gate % 2) ^ 0xF8;
|
||
if (onoff != 0) {
|
||
DIAG(F("DCC::setAccessory(%d,%d,%d) ON"), address, port, gate);
|
||
DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat on packet three times
|
||
#if defined(EXRAIL_ACTIVE)
|
||
RMFT2::activateEvent(address<<2|port,gate);
|
||
#endif
|
||
}
|
||
if (onoff != 1) {
|
||
b[1] &= ~0x08; // set C to 0
|
||
DIAG(F("DCC::setAccessory(%d,%d,%d) OFF"), address, port, gate);
|
||
DCCWaveform::mainTrack.schedulePacket(b, 2, 3); // Repeat off packet three times
|
||
}
|
||
}
|
||
|
||
bool DCC::setExtendedAccessory(int16_t address, int16_t value, byte repeats) {
|
||
|
||
/* From https://www.nmra.org/sites/default/files/s-9.2.1_2012_07.pdf
|
||
|
||
The Extended Accessory Decoder Control Packet is included for the purpose of transmitting aspect control to signal
|
||
decoders or data bytes to more complex accessory decoders. Each signal head can display one aspect at a time.
|
||
{preamble} 0 10AAAAAA 0 0AAA0AA1 0 000XXXXX 0 EEEEEEEE 1
|
||
|
||
XXXXX is for a single head. A value of 00000 for XXXXX indicates the absolute stop aspect. All other aspects
|
||
represented by the values for XXXXX are determined by the signaling system used and the prototype being
|
||
modeled.
|
||
|
||
From https://normen.railcommunity.de/RCN-213.pdf:
|
||
|
||
More information is in RCN-213 about how the address bits are organized.
|
||
preamble -0- 1 0 A7 A6 A5 A4 A3 A2 -0- 0 ^A10 ^A9 ^A8 0 A1 A0 1 -0- ....
|
||
|
||
Thus in byte packet form the format is 10AAAAAA, 0AAA0AA1, 000XXXXX
|
||
|
||
Die Adresse f<>r den ersten erweiterten Zubeh<65>rdecoder ist wie bei den einfachen
|
||
Zubeh<EFBFBD>rdecodern die Adresse 4 = 1000-0001 0111-0001 . Diese Adresse wird in
|
||
Anwenderdialogen als Adresse 1 dargestellt.
|
||
|
||
This means that the first address shown to the user as "1" is mapped
|
||
to internal address 4.
|
||
|
||
Note that the Basic accessory format mentions "By convention these
|
||
bits (bits 4-6 of the second data byte) are in ones complement" but
|
||
this note is absent from the advanced packet description. The
|
||
english translation does not mention that the address format for
|
||
the advanced packet follows the one for the basic packet but
|
||
according to the RCN-213 this is the case.
|
||
|
||
We allow for addresses from -3 to 2047-3 as that allows to address the
|
||
whole range of the 11 bits sent to track.
|
||
*/
|
||
if ((address > 2044) || (address < -3)) return false; // 2047-3, 11 bits but offset 3
|
||
if (value != (value & 0x1F)) return false; // 5 bits
|
||
|
||
address+=3; // +3 offset according to RCN-213
|
||
byte b[3];
|
||
b[0]= 0x80 // bits always on
|
||
| ((address>>2) & 0x3F); // shift out 2, mask out used bits
|
||
b[1]= 0x01 // bits always on
|
||
| (((~(address>>8)) & 0x07)<<4) // shift out 8, invert, mask 3 bits, shift up 4
|
||
| ((address & 0x03)<<1); // mask 2 bits, shift up 1
|
||
b[2]=value;
|
||
DCCWaveform::mainTrack.schedulePacket(b, sizeof(b), repeats);
|
||
return true;
|
||
}
|
||
|
||
//
|
||
// writeCVByteMain: Write a byte with PoM on main. This writes
|
||
// the 5 byte sized packet to implement this DCC function
|
||
//
|
||
void DCC::writeCVByteMain(int cab, int cv, byte bValue) {
|
||
byte b[5];
|
||
byte nB = 0;
|
||
if (cab > HIGHEST_SHORT_ADDR)
|
||
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
||
|
||
b[nB++] = lowByte(cab);
|
||
b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
|
||
b[nB++] = cv2(cv);
|
||
b[nB++] = bValue;
|
||
|
||
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
|
||
}
|
||
|
||
//
|
||
// writeCVBitMain: Write a bit of a byte with PoM on main. This writes
|
||
// the 5 byte sized packet to implement this DCC function
|
||
//
|
||
void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) {
|
||
byte b[5];
|
||
byte nB = 0;
|
||
bValue = bValue % 2;
|
||
bNum = bNum % 8;
|
||
|
||
if (cab > HIGHEST_SHORT_ADDR)
|
||
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
||
|
||
b[nB++] = lowByte(cab);
|
||
b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
|
||
b[nB++] = cv2(cv);
|
||
b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum;
|
||
|
||
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
|
||
}
|
||
|
||
FSH* DCC::getMotorShieldName() {
|
||
return shieldName;
|
||
}
|
||
|
||
const ackOp FLASH WRITE_BIT0_PROG[] = {
|
||
BASELINE,
|
||
W0,WACK,
|
||
V0, WACK, // validate bit is 0
|
||
ITC1, // if acked, callback(1)
|
||
CALLFAIL // callback (-1)
|
||
};
|
||
const ackOp FLASH WRITE_BIT1_PROG[] = {
|
||
BASELINE,
|
||
W1,WACK,
|
||
V1, WACK, // validate bit is 1
|
||
ITC1, // if acked, callback(1)
|
||
CALLFAIL // callback (-1)
|
||
};
|
||
|
||
const ackOp FLASH VERIFY_BIT0_PROG[] = {
|
||
BASELINE,
|
||
V0, WACK, // validate bit is 0
|
||
ITC0, // if acked, callback(0)
|
||
V1, WACK, // validate bit is 1
|
||
ITC1,
|
||
CALLFAIL // callback (-1)
|
||
};
|
||
const ackOp FLASH VERIFY_BIT1_PROG[] = {
|
||
BASELINE,
|
||
V1, WACK, // validate bit is 1
|
||
ITC1, // if acked, callback(1)
|
||
V0, WACK,
|
||
ITC0,
|
||
CALLFAIL // callback (-1)
|
||
};
|
||
|
||
const ackOp FLASH READ_BIT_PROG[] = {
|
||
BASELINE,
|
||
V1, WACK, // validate bit is 1
|
||
ITC1, // if acked, callback(1)
|
||
V0, WACK, // validate bit is zero
|
||
ITC0, // if acked callback 0
|
||
CALLFAIL // bit not readable
|
||
};
|
||
|
||
const ackOp FLASH WRITE_BYTE_PROG[] = {
|
||
BASELINE,
|
||
WB,WACK,ITC1, // Write and callback(1) if ACK
|
||
// handle decoders that dont ack a write
|
||
VB,WACK,ITC1, // validate byte and callback(1) if correct
|
||
CALLFAIL // callback (-1)
|
||
};
|
||
|
||
const ackOp FLASH VERIFY_BYTE_PROG[] = {
|
||
BASELINE,
|
||
BIV, // ackManagerByte initial value
|
||
VB,WACK, // validate byte
|
||
ITCB, // if ok callback value
|
||
STARTMERGE, //clear bit and byte values ready for merge pass
|
||
// each bit is validated against 0 and the result inverted in MERGE
|
||
// this is because there tend to be more zeros in cv values than ones.
|
||
// There is no need for one validation as entire byte is validated at the end
|
||
V0, WACK, MERGE, // read and merge first tested bit (7)
|
||
ITSKIP, // do small excursion if there was no ack
|
||
SETBIT,(ackOp)7,
|
||
V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7)
|
||
SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6)
|
||
SKIPTARGET,
|
||
V0, WACK, MERGE, // read and merge second tested bit (6)
|
||
V0, WACK, MERGE, // read and merge third tested bit (5) ...
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, ITCBV, // verify merged byte and return it if acked ok - with retry report
|
||
CALLFAIL };
|
||
|
||
|
||
const ackOp FLASH READ_CV_PROG[] = {
|
||
BASELINE,
|
||
STARTMERGE, //clear bit and byte values ready for merge pass
|
||
// each bit is validated against 0 and the result inverted in MERGE
|
||
// this is because there tend to be more zeros in cv values than ones.
|
||
// There is no need for one validation as entire byte is validated at the end
|
||
V0, WACK, MERGE, // read and merge first tested bit (7)
|
||
ITSKIP, // do small excursion if there was no ack
|
||
SETBIT,(ackOp)7,
|
||
V1, WACK, NAKFAIL, // test if there is an ack on the inverse of this bit (7)
|
||
SETBIT,(ackOp)6, // and abort whole test if not else continue with bit (6)
|
||
SKIPTARGET,
|
||
V0, WACK, MERGE, // read and merge second tested bit (6)
|
||
V0, WACK, MERGE, // read and merge third tested bit (5) ...
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, ITCB, // verify merged byte and return it if acked ok
|
||
CALLFAIL }; // verification failed
|
||
|
||
|
||
const ackOp FLASH LOCO_ID_PROG[] = {
|
||
BASELINE,
|
||
// first check cv20 for extended addressing
|
||
SETCV, (ackOp)20, // CV 19 is extended
|
||
SETBYTE, (ackOp)0,
|
||
VB, WACK, ITSKIP, // skip past extended section if cv20 is zero
|
||
// read cv20 and 19 and merge
|
||
STARTMERGE, // Setup to read cv 20
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, NAKSKIP, // bad read of cv20, assume its 0
|
||
STASHLOCOID, // keep cv 20 until we have cv19 as well.
|
||
SETCV, (ackOp)19,
|
||
STARTMERGE, // Setup to read cv 19
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, NAKFAIL, // cant recover if cv 19 unreadable
|
||
COMBINE1920, // Combile byte with stash and callback
|
||
// end of advanced 20,19 check
|
||
SKIPTARGET,
|
||
SETCV, (ackOp)19, // CV 19 is consist setting
|
||
SETBYTE, (ackOp)0,
|
||
VB, WACK, ITSKIP, // ignore consist if cv19 is zero (no consist)
|
||
SETBYTE, (ackOp)128,
|
||
VB, WACK, ITSKIP, // ignore consist if cv19 is 128 (no consist, direction bit set)
|
||
STARTMERGE, // Setup to read cv 19
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, ITCB7, // return 7 bits only, No_ACK means CV19 not supported so ignore it
|
||
|
||
SKIPTARGET, // continue here if CV 19 is zero or fails all validation
|
||
SETCV,(ackOp)29,
|
||
SETBIT,(ackOp)5,
|
||
V0, WACK, ITSKIP, // Skip to SKIPTARGET if bit 5 of CV29 is zero
|
||
|
||
// Long locoid
|
||
SETCV, (ackOp)17, // CV 17 is part of locoid
|
||
STARTMERGE,
|
||
V0, WACK, MERGE, // read and merge bit 1 etc
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
|
||
STASHLOCOID, // keep stashed cv 17 for later
|
||
// Read 2nd part from CV 18
|
||
SETCV, (ackOp)18,
|
||
STARTMERGE,
|
||
V0, WACK, MERGE, // read and merge bit 1 etc
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
|
||
COMBINELOCOID, // Combile byte with stash to make long locoid and callback
|
||
|
||
// ITSKIP Skips to here if CV 29 bit 5 was zero. so read CV 1 and return that
|
||
SKIPTARGET,
|
||
SETCV, (ackOp)1,
|
||
STARTMERGE,
|
||
SETBIT, (ackOp)6, // skip over first bit as we know its a zero
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
V0, WACK, MERGE,
|
||
VB, WACK, ITCB, // verify merged byte and callback
|
||
CALLFAIL
|
||
};
|
||
|
||
const ackOp FLASH SHORT_LOCO_ID_PROG[] = {
|
||
BASELINE,
|
||
// Clear consist CV 19,20
|
||
SETCV,(ackOp)20,
|
||
SETBYTE, (ackOp)0,
|
||
WB,WACK, // ignore dedcoder without cv20 support
|
||
SETCV,(ackOp)19,
|
||
SETBYTE, (ackOp)0,
|
||
WB,WACK, // ignore dedcoder without cv19 support
|
||
// Turn off long address flag
|
||
SETCV,(ackOp)29,
|
||
SETBIT,(ackOp)5,
|
||
W0,WACK,
|
||
V0,WACK,NAKFAIL,
|
||
SETCV, (ackOp)1,
|
||
SETBYTEL, // low byte of word
|
||
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
|
||
VB,WACK,ITC1, // Some decoders do not ack and need verify
|
||
CALLFAIL
|
||
};
|
||
|
||
// for CONSIST_ID_PROG the 20,19 values are already calculated
|
||
const ackOp FLASH CONSIST_ID_PROG[] = {
|
||
BASELINE,
|
||
SETCV,(ackOp)20,
|
||
SETBYTEH, // high byte to CV 20
|
||
WB,WACK, // ignore dedcoder without cv20 support
|
||
SETCV,(ackOp)19,
|
||
SETBYTEL, // low byte of word
|
||
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
|
||
VB,WACK,ITC1, // Some decoders do not ack and need verify
|
||
CALLFAIL
|
||
};
|
||
|
||
const ackOp FLASH LONG_LOCO_ID_PROG[] = {
|
||
BASELINE,
|
||
// Clear consist CV 19,20
|
||
SETCV,(ackOp)20,
|
||
SETBYTE, (ackOp)0,
|
||
WB,WACK, // ignore dedcoder without cv20 support
|
||
SETCV,(ackOp)19,
|
||
SETBYTE, (ackOp)0,
|
||
WB,WACK, // ignore decoder without cv19 support
|
||
// Turn on long address flag cv29 bit 5
|
||
SETCV,(ackOp)29,
|
||
SETBIT,(ackOp)5,
|
||
W1,WACK,
|
||
V1,WACK,NAKFAIL,
|
||
// Store high byte of address in cv 17
|
||
SETCV, (ackOp)17,
|
||
SETBYTEH, // high byte of word
|
||
WB,WACK, // do write
|
||
ITSKIP, // if ACK, jump to SKIPTARGET
|
||
VB,WACK, // try verify instead
|
||
ITSKIP, // if ACK, jump to SKIPTARGET
|
||
CALLFAIL, // if still here, fail
|
||
SKIPTARGET,
|
||
// store
|
||
SETCV, (ackOp)18,
|
||
SETBYTEL, // low byte of word
|
||
WB,WACK,ITC1, // If ACK, we are done - callback(1) means Ok
|
||
VB,WACK,ITC1, // Some decoders do not ack and need verify
|
||
CALLFAIL
|
||
};
|
||
|
||
void DCC::writeCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) {
|
||
DCCACK::Setup(cv, byteValue, WRITE_BYTE_PROG, callback);
|
||
}
|
||
|
||
void DCC::writeCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) {
|
||
if (bitNum >= 8) callback(-1);
|
||
else DCCACK::Setup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback);
|
||
}
|
||
|
||
void DCC::verifyCVByte(int16_t cv, byte byteValue, ACK_CALLBACK callback) {
|
||
DCCACK::Setup(cv, byteValue, VERIFY_BYTE_PROG, callback);
|
||
}
|
||
|
||
void DCC::verifyCVBit(int16_t cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) {
|
||
if (bitNum >= 8) callback(-1);
|
||
else DCCACK::Setup(cv, bitNum, bitValue?VERIFY_BIT1_PROG:VERIFY_BIT0_PROG, callback);
|
||
}
|
||
|
||
|
||
void DCC::readCVBit(int16_t cv, byte bitNum, ACK_CALLBACK callback) {
|
||
if (bitNum >= 8) callback(-1);
|
||
else DCCACK::Setup(cv, bitNum,READ_BIT_PROG, callback);
|
||
}
|
||
|
||
void DCC::readCV(int16_t cv, ACK_CALLBACK callback) {
|
||
DCCACK::Setup(cv, 0,READ_CV_PROG, callback);
|
||
}
|
||
|
||
void DCC::getLocoId(ACK_CALLBACK callback) {
|
||
DCCACK::Setup(0,0, LOCO_ID_PROG, callback);
|
||
}
|
||
|
||
void DCC::setLocoId(int id,ACK_CALLBACK callback) {
|
||
if (id<1 || id>10239) { //0x27FF according to standard
|
||
callback(-1);
|
||
return;
|
||
}
|
||
if (id<=HIGHEST_SHORT_ADDR)
|
||
DCCACK::Setup(id, SHORT_LOCO_ID_PROG, callback);
|
||
else
|
||
DCCACK::Setup(id | 0xc000,LONG_LOCO_ID_PROG, callback);
|
||
}
|
||
|
||
void DCC::setConsistId(int id,bool reverse,ACK_CALLBACK callback) {
|
||
if (id<0 || id>10239) { //0x27FF according to standard
|
||
callback(-1);
|
||
return;
|
||
}
|
||
byte cv20;
|
||
byte cv19;
|
||
|
||
if (id<=HIGHEST_SHORT_ADDR) {
|
||
cv19=id;
|
||
cv20=0;
|
||
}
|
||
else {
|
||
cv20=id/100;
|
||
cv19=id%100;
|
||
}
|
||
if (reverse) cv19|=0x80;
|
||
DCCACK::Setup((cv20<<8)|cv19, CONSIST_ID_PROG, callback);
|
||
}
|
||
|
||
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
|
||
setThrottle2(cab,1); // ESTOP this loco if still on track
|
||
int reg=lookupSpeedTable(cab, false);
|
||
if (reg>=0) {
|
||
speedTable[reg].loco=0;
|
||
setThrottle2(cab,1); // ESTOP if this loco still on track
|
||
CommandDistributor::broadcastForgetLoco(cab);
|
||
}
|
||
}
|
||
void DCC::forgetAllLocos() { // removes all speed reminders
|
||
setThrottle2(0,1); // ESTOP all locos still on track
|
||
for (int i=0;i<MAX_LOCOS;i++) {
|
||
if (speedTable[i].loco) CommandDistributor::broadcastForgetLoco(speedTable[i].loco);
|
||
speedTable[i].loco=0;
|
||
}
|
||
}
|
||
|
||
byte DCC::loopStatus=0;
|
||
|
||
void DCC::loop() {
|
||
TrackManager::loop(); // power overload checks
|
||
issueReminders();
|
||
}
|
||
|
||
void DCC::issueReminders() {
|
||
// if the main track transmitter still has a pending packet, skip this time around.
|
||
if (!DCCWaveform::mainTrack.isReminderWindowOpen()) return;
|
||
// Move to next loco slot. If occupied, send a reminder.
|
||
int reg = lastLocoReminder+1;
|
||
if (reg > highestUsedReg) reg = 0; // Go to start of table
|
||
if (speedTable[reg].loco > 0) {
|
||
// have found loco to remind
|
||
if (issueReminder(reg))
|
||
lastLocoReminder = reg;
|
||
} else
|
||
lastLocoReminder = reg;
|
||
}
|
||
|
||
bool DCC::issueReminder(int reg) {
|
||
unsigned long functions=speedTable[reg].functions;
|
||
int loco=speedTable[reg].loco;
|
||
byte flags=speedTable[reg].groupFlags;
|
||
|
||
switch (loopStatus) {
|
||
case 0:
|
||
// DIAG(F("Reminder %d speed %d"),loco,speedTable[reg].speedCode);
|
||
setThrottle2(loco, speedTable[reg].speedCode);
|
||
break;
|
||
case 1: // remind function group 1 (F0-F4)
|
||
if (flags & FN_GROUP_1)
|
||
#ifndef DISABLE_FUNCTION_REMINDERS
|
||
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),0); // 100D DDDD
|
||
#else
|
||
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4),2);
|
||
flags&= ~FN_GROUP_1; // dont send them again
|
||
#endif
|
||
break;
|
||
case 2: // remind function group 2 F5-F8
|
||
if (flags & FN_GROUP_2)
|
||
#ifndef DISABLE_FUNCTION_REMINDERS
|
||
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),0); // 1011 DDDD
|
||
#else
|
||
setFunctionInternal(loco,0, 176 | ((functions>>5)& 0x0F),2);
|
||
flags&= ~FN_GROUP_2; // dont send them again
|
||
#endif
|
||
break;
|
||
case 3: // remind function group 3 F9-F12
|
||
if (flags & FN_GROUP_3)
|
||
#ifndef DISABLE_FUNCTION_REMINDERS
|
||
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),0); // 1010 DDDD
|
||
#else
|
||
setFunctionInternal(loco,0, 160 | ((functions>>9)& 0x0F),2);
|
||
flags&= ~FN_GROUP_3; // dont send them again
|
||
#endif
|
||
break;
|
||
case 4: // remind function group 4 F13-F20
|
||
if (flags & FN_GROUP_4)
|
||
setFunctionInternal(loco,222, ((functions>>13)& 0xFF),2);
|
||
flags&= ~FN_GROUP_4; // dont send them again
|
||
break;
|
||
case 5: // remind function group 5 F21-F28
|
||
if (flags & FN_GROUP_5)
|
||
setFunctionInternal(loco,223, ((functions>>21)& 0xFF),2);
|
||
flags&= ~FN_GROUP_5; // dont send them again
|
||
break;
|
||
}
|
||
loopStatus++;
|
||
// if we reach status 6 then this loco is done so
|
||
// reset status to 0 for next loco and return true so caller
|
||
// moves on to next loco.
|
||
if (loopStatus>5) loopStatus=0;
|
||
return loopStatus==0;
|
||
}
|
||
|
||
|
||
|
||
|
||
///// Private helper functions below here /////////////////////
|
||
|
||
byte DCC::cv1(byte opcode, int cv) {
|
||
cv--;
|
||
return (highByte(cv) & (byte)0x03) | opcode;
|
||
}
|
||
byte DCC::cv2(int cv) {
|
||
cv--;
|
||
return lowByte(cv);
|
||
}
|
||
|
||
int DCC::lookupSpeedTable(int locoId, bool autoCreate) {
|
||
// determine speed reg for this loco
|
||
int firstEmpty = MAX_LOCOS;
|
||
int reg;
|
||
for (reg = 0; reg < MAX_LOCOS; reg++) {
|
||
if (speedTable[reg].loco == locoId) break;
|
||
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg;
|
||
}
|
||
|
||
// return -1 if not found and not auto creating
|
||
if (reg== MAX_LOCOS && !autoCreate) return -1;
|
||
if (reg == MAX_LOCOS) reg = firstEmpty;
|
||
if (reg >= MAX_LOCOS) {
|
||
DIAG(F("Too many locos"));
|
||
return -1;
|
||
}
|
||
if (reg==firstEmpty){
|
||
speedTable[reg].loco = locoId;
|
||
speedTable[reg].speedCode=128; // default direction forward
|
||
speedTable[reg].groupFlags=0;
|
||
speedTable[reg].functions=0;
|
||
}
|
||
if (reg > highestUsedReg) highestUsedReg = reg;
|
||
return reg;
|
||
}
|
||
|
||
void DCC::updateLocoReminder(int loco, byte speedCode) {
|
||
|
||
if (loco==0) {
|
||
// broadcast stop/estop but dont change direction
|
||
for (int reg = 0; reg <= highestUsedReg; reg++) {
|
||
if (speedTable[reg].loco==0) continue;
|
||
byte newspeed=(speedTable[reg].speedCode & 0x80) | (speedCode & 0x7f);
|
||
if (speedTable[reg].speedCode != newspeed) {
|
||
speedTable[reg].speedCode = newspeed;
|
||
CommandDistributor::broadcastLoco(reg);
|
||
}
|
||
}
|
||
return;
|
||
}
|
||
|
||
// determine speed reg for this loco
|
||
int reg=lookupSpeedTable(loco);
|
||
if (reg>=0 && speedTable[reg].speedCode!=speedCode) {
|
||
speedTable[reg].speedCode = speedCode;
|
||
CommandDistributor::broadcastLoco(reg);
|
||
}
|
||
}
|
||
|
||
DCC::LOCO DCC::speedTable[MAX_LOCOS];
|
||
int DCC::lastLocoReminder = 0;
|
||
int DCC::highestUsedReg = 0;
|
||
|
||
|
||
void DCC::displayCabList(Print * stream) {
|
||
|
||
int used=0;
|
||
for (int reg = 0; reg <= highestUsedReg; reg++) {
|
||
if (speedTable[reg].loco>0) {
|
||
used ++;
|
||
StringFormatter::send(stream,F("cab=%d, speed=%d, dir=%c \n"),
|
||
speedTable[reg].loco, speedTable[reg].speedCode & 0x7f,(speedTable[reg].speedCode & 0x80) ? 'F':'R');
|
||
}
|
||
}
|
||
StringFormatter::send(stream,F("Used=%d, max=%d\n"),used,MAX_LOCOS);
|
||
|
||
}
|