1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-26 17:46:14 +01:00
CommandStation-EX/DCCWaveform.cpp
2020-05-24 10:27:33 +01:00

263 lines
7.8 KiB
C++

#include <Arduino.h>
#include <TimerThree.h>
#include "DCCWaveform.h"
#include "DIAG.h"
DCCWaveform DCCWaveform::mainTrack(MAIN_POWER_PIN,MAIN_SIGNAL_PIN,MAIN_SENSE_PIN,PREAMBLE_BITS_MAIN,true);
DCCWaveform DCCWaveform::progTrack(PROG_POWER_PIN,PROG_SIGNAL_PIN,PROG_SENSE_PIN,PREAMBLE_BITS_PROG,false);
void DCCWaveform::begin() {
Timer3.initialize(58);
Timer3.disablePwm(MAIN_SIGNAL_PIN);
Timer3.disablePwm(PROG_SIGNAL_PIN);
Timer3.attachInterrupt(interruptHandler);
mainTrack.beginTrack();
progTrack.beginTrack();
}
void DCCWaveform::loop() {
mainTrack.checkPowerOverload();
progTrack.checkPowerOverload();
}
// static //
void DCCWaveform::interruptHandler() {
// call the timer edge sensitive actions for progtrack and maintrack
bool mainCall2=mainTrack.interrupt1();
bool progCall2=progTrack.interrupt1();
// call (if necessary) the procs to get the current bits
// these must complete within 50microsecs of the interrupt
// but they are only called ONCE PER BIT TRANSMITTED
// after the rising edge of the signal
if (mainCall2) mainTrack.interrupt2();
if (progCall2) progTrack.interrupt2();
}
// An instance of this class handles the DCC transmissions for one track. (main or prog)
// Interrupts are marshalled via the statics.
// A track has a current transmit buffer, and a pending buffer.
// When the current buffer is exhausted, either the pending buffer (if there is one waiting) or an idle buffer.
// This bitmask has 9 entries as each byte is trasmitted as a zero + 8 bits.
const byte bitMask[]={0x00,0x80,0x40,0x20,0x10,0x08,0x04,0x02,0x01};
DCCWaveform::DCCWaveform(byte powerPinNo, byte directionPinNo, byte sensePinNo, byte preambleBits, bool isMain) {
// establish appropriate pins
powerPin=Arduino_to_GPIO_pin(powerPinNo);
directionPin=Arduino_to_GPIO_pin(directionPinNo);
sensePin=sensePinNo;
isMainTrack=isMain;
packetPending=false;
memcpy(transmitPacket,idlePacket,sizeof(idlePacket));
state=0;
requiredPreambles=preambleBits;
bytes_sent=0;
bits_sent=0;
nextSampleDue=0;
}
void DCCWaveform::beginTrack() {
pinMode2f(powerPin,OUTPUT);
pinMode2f(directionPin,OUTPUT);
pinMode(sensePin,INPUT);
if (isMainTrack && RAILCOM_CUTOUT) {
railcomBrakePin=Arduino_to_GPIO_pin(RAILCOM_BRAKE_PIN);
pinMode2f(railcomBrakePin, OUTPUT);
digitalWrite2f(railcomBrakePin, LOW);
}
setPowerMode(POWERMODE::ON);
DIAG(F("\nTrack started sensePin=%d\n"),sensePin);
}
POWERMODE DCCWaveform::getPowerMode() {
return powerMode;
}
void DCCWaveform::setPowerMode(POWERMODE mode) {
powerMode=mode;
digitalWrite2f(powerPin, mode==POWERMODE::ON ? HIGH:LOW);
if (mode==POWERMODE::ON) schedulePacket(resetMessage,2,20);
}
void DCCWaveform::checkPowerOverload() {
if (millis()<nextSampleDue) return;
int current;
int delay;
switch (powerMode) {
case POWERMODE::OFF:
delay=POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
current=analogRead(sensePin);
if (current < POWER_SAMPLE_MAX) delay=POWER_SAMPLE_ON_WAIT;
else {
setPowerMode(POWERMODE::OVERLOAD);
DIAG(F("\n*** %s TRACK POWER OVERLOAD pin=%d current=%d max=%d ***\n"),isMainTrack?"MAIN":"PROG",sensePin,current,POWER_SAMPLE_MAX);
delay=POWER_SAMPLE_OVERLOAD_WAIT;
}
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPowerMode(POWERMODE::ON);
delay=POWER_SAMPLE_ON_WAIT;
break;
default:
delay=999; // cant get here..meaningless statement to avoid compiler warning.
}
nextSampleDue=millis()+delay;
}
// process time-edge sensitive part of interrupt
// return true if second level required
bool DCCWaveform::interrupt1() {
// NOTE: this must consume transmission buffers even if the power is off
// otherwise can cause hangs in main loop waiting for the pendingBuffer.
switch (state) {
case 0: // start of bit transmission
digitalWrite2f(directionPin, HIGH);
checkRailcom();
state = 1;
return true; // must call interrupt2 to set currentBit
case 1: // 58us after case 0
if (currentBit) {
digitalWrite2f(directionPin, LOW);
state = 0;
}
else state = 2;
break;
case 2: // 116us after case 0
digitalWrite2f(directionPin, LOW);
state = 3;
break;
case 3: // finished sending zero bit
state = 0;
break;
}
return false;
}
void DCCWaveform::interrupt2() {
// set currentBit to be the next bit to be sent.
if (remainingPreambles > 0 ) {
currentBit=true;
remainingPreambles--;
return;
}
// beware OF 9-BIT MASK generating a zero to start each byte
currentBit=transmitPacket[bytes_sent] & bitMask[bits_sent];
bits_sent++;
// If this is the last bit of a byte, prepare for the next byte
if (bits_sent==9) { // zero followed by 8 bits of a byte
//end of Byte
bits_sent=0;
bytes_sent++;
// if this is the last byte, prepere for next packet
if (bytes_sent >= transmitLength) {
// end of transmission buffer... repeat or switch to next message
bytes_sent = 0;
remainingPreambles=requiredPreambles;
if (transmitRepeats > 0) {
transmitRepeats--;
}
else if (packetPending) {
// Copy pending packet to transmit packet
for (int b=0;b<pendingLength;b++) transmitPacket[b]= pendingPacket[b];
transmitLength=pendingLength;
transmitRepeats=pendingRepeats;
packetPending=false;
}
else {
// Fortunately reset and idle packets are the same length
memcpy( transmitPacket,isMainTrack?idlePacket:resetPacket, sizeof(idlePacket));
transmitLength=sizeof(idlePacket);
transmitRepeats=0;
}
}
}
}
void DCCWaveform::checkRailcom() {
if (isMainTrack && RAILCOM_CUTOUT) {
byte preamble=PREAMBLE_BITS_MAIN - remainingPreambles;
if (preamble == RAILCOM_PREAMBLES_BEFORE_CUTOUT) {
digitalWrite2f(railcomBrakePin,HIGH);
}
else if (preamble== RAILCOM_PREAMBLES_BEFORE_CUTOUT+RAILCOM_PREAMBLES_SKIPPED_IN_CUTOUT) {
digitalWrite2f(railcomBrakePin,LOW);
}
}
}
// Wait until there is no packet pending, then make this pending
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
if (byteCount>=MAX_PACKET_SIZE) return; // allow for chksum
while(packetPending) delay(1);
byte checksum=0;
for (int b=0;b<byteCount; b++) {
checksum^=buffer[b];
pendingPacket[b]=buffer[b];
}
pendingPacket[byteCount]=checksum;
pendingLength=byteCount+1;
pendingRepeats=repeats;
packetPending=true;
}
bool DCCWaveform::getAck()
{
if (isMainTrack) return false; // cant do this on main track
while(packetPending) delay(1); // wait until transmitter has started transmitting the message
unsigned long timeout=millis()+ACK_TIMEOUT;
int maxCurrent=0;
bool result=false;
int upsamples=0;
int downsamples=0;
// Monitor looking for a reading high enough to be an ack
while(result==false && timeout>millis()) {
upsamples++;
int current=analogRead(sensePin);
maxCurrent=max(maxCurrent,current);
result=current > ACK_MIN_PULSE;
}
// Monitor current until ack signal dies back
if (result) while( true) {
downsamples++;
int current=analogRead(sensePin);
maxCurrent=max(maxCurrent,current);
if (current<= ACK_MAX_NOT_PULSE) break;
}
// The following DIAG is really useful as it can show how long and how far the
// current changes during an ACK from the decoder.
// DIAG(F("\nack=%d max=%d, up=%d, down=%d "),result,maxCurrent, upsamples,downsamples);
return result;
}