mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-27 01:56:14 +01:00
a915331103
JMRI -1 means speed=1 in DCC
614 lines
20 KiB
C++
614 lines
20 KiB
C++
/*
|
|
* © 2020, Chris Harlow. All rights reserved.
|
|
*
|
|
* This file is part of Asbelos DCC API
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "DCC.h"
|
|
#include "DCCWaveform.h"
|
|
#include "DIAG.h"
|
|
#include "Hardware.h"
|
|
|
|
// This module is responsible for converting API calls into
|
|
// messages to be sent to the waveform generator.
|
|
// It has no visibility of the hardware, timers, interrupts
|
|
// nor of the waveform issues such as preambles, start bits checksums or cutouts.
|
|
//
|
|
// Nor should it have to deal with JMRI responsess other than the OK/FAIL
|
|
// or cv value returned. I will move that back to the JMRI interface later
|
|
//
|
|
// The interface to the waveform generator is narrowed down to merely:
|
|
// Scheduling a message on the prog or main track using a function
|
|
// Obtaining ACKs from the prog track using a function
|
|
// There are no volatiles here.
|
|
|
|
const byte FN_GROUP_1=0x01;
|
|
const byte FN_GROUP_2=0x02;
|
|
const byte FN_GROUP_3=0x04;
|
|
const byte FN_GROUP_4=0x08;
|
|
const byte FN_GROUP_5=0x10;
|
|
|
|
|
|
void DCC::begin() {
|
|
debugMode=false;
|
|
DCCWaveform::begin();
|
|
}
|
|
|
|
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {
|
|
byte speedCode = (tSpeed & 0x7F) + tDirection * 128; //speed codes range from 2-127 (0=stop, 1=emergency stop)
|
|
setThrottle2(cab, speedCode);
|
|
// retain speed for loco reminders
|
|
updateLocoReminder(cab, speedCode );
|
|
}
|
|
|
|
void DCC::setThrottle2( uint16_t cab, byte speedCode) {
|
|
|
|
uint8_t b[4];
|
|
uint8_t nB = 0;
|
|
// DIAG(F("\nsetSpeedInternal %d %x"),cab,speedCode);
|
|
|
|
if (cab > 127)
|
|
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
|
b[nB++] = lowByte(cab);
|
|
b[nB++] = SET_SPEED; // 128-step speed control byte
|
|
b[nB++] = speedCode; // for encoding see setThrottle
|
|
|
|
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
|
|
}
|
|
|
|
void DCC::setFunctionInternal(int cab, byte byte1, byte byte2) {
|
|
// DIAG(F("\nsetFunctionInternal %d %x %x"),cab,byte1,byte2);
|
|
byte b[4];
|
|
byte nB = 0;
|
|
|
|
if (cab > 127)
|
|
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
|
b[nB++] = lowByte(cab);
|
|
if (byte1!=0) b[nB++] = byte1;
|
|
b[nB++] = byte2;
|
|
|
|
DCCWaveform::mainTrack.schedulePacket(b, nB, 3); // send packet 3 times
|
|
}
|
|
|
|
uint8_t DCC::getThrottleSpeed(int cab) {
|
|
int reg=lookupSpeedTable(cab);
|
|
if (reg<0) return -1;
|
|
return speedTable[reg].speedCode & 0x7F;
|
|
}
|
|
|
|
bool DCC::getThrottleDirection(int cab) {
|
|
int reg=lookupSpeedTable(cab);
|
|
if (reg<0) return false ;
|
|
return (speedTable[reg].speedCode & 0x80) !=0;
|
|
}
|
|
|
|
void DCC::setFn( int cab, byte functionNumber, bool on) {
|
|
if (cab<=0 || functionNumber>28) return;
|
|
int reg = lookupSpeedTable(cab);
|
|
if (reg<0) return;
|
|
// set the function on/off in the functions and set the group flag to
|
|
// say we have touched the particular group.
|
|
// A group will be reminded only if it has been touched.
|
|
if (on) speedTable[reg].functions |= (1L<<functionNumber);
|
|
else speedTable[reg].functions &= ~(1L<<functionNumber);
|
|
byte groupMask;
|
|
if (functionNumber<=4) groupMask=FN_GROUP_1;
|
|
else if (functionNumber<=8) groupMask=FN_GROUP_2;
|
|
else if (functionNumber<=12) groupMask=FN_GROUP_3;
|
|
else if (functionNumber<=20) groupMask=FN_GROUP_4;
|
|
else groupMask=FN_GROUP_5;
|
|
speedTable[reg].groupFlags |= groupMask;
|
|
}
|
|
|
|
void DCC::setAccessory(int address, byte number, bool activate) {
|
|
// use masks to detect wrong values and do nothing
|
|
if(address != (address & 511))
|
|
return;
|
|
if(number != (number & 3))
|
|
return;
|
|
byte b[2];
|
|
|
|
b[0] = address % 64 + 128; // first byte is of the form 10AAAAAA, where AAAAAA represent 6 least signifcant bits of accessory address
|
|
b[1] = ((((address / 64) % 8) << 4) + (number % 4 << 1) + activate % 2) ^ 0xF8; // second byte is of the form 1AAACDDD, where C should be 1, and the least significant D represent activate/deactivate
|
|
|
|
DCCWaveform::mainTrack.schedulePacket(b, 2, 4); // Repeat the packet four times
|
|
}
|
|
|
|
void DCC::writeCVByteMain(int cab, int cv, byte bValue) {
|
|
byte b[5];
|
|
byte nB = 0;
|
|
if (cab > 127)
|
|
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
|
|
|
b[nB++] = lowByte(cab);
|
|
b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
|
|
b[nB++] = cv2(cv);
|
|
b[nB++] = bValue;
|
|
|
|
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
|
|
}
|
|
|
|
void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) {
|
|
byte b[5];
|
|
byte nB = 0;
|
|
bValue = bValue % 2;
|
|
bNum = bNum % 8;
|
|
|
|
if (cab > 127)
|
|
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
|
|
|
|
b[nB++] = lowByte(cab);
|
|
b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
|
|
b[nB++] = cv2(cv);
|
|
b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum;
|
|
|
|
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
|
|
}
|
|
|
|
void DCC::setProgTrackSyncMain(bool on) {
|
|
DCCWaveform::progTrackSyncMain=on;
|
|
}
|
|
|
|
const ackOp PROGMEM WRITE_BIT0_PROG[] = {
|
|
BASELINE,
|
|
W0,WACK,
|
|
V0, WACK, // validate bit is 0
|
|
ITC1, // if acked, callback(1)
|
|
FAIL // callback (-1)
|
|
};
|
|
const ackOp PROGMEM WRITE_BIT1_PROG[] = {
|
|
BASELINE,
|
|
W1,WACK,
|
|
V1, WACK, // validate bit is 1
|
|
ITC1, // if acked, callback(1)
|
|
FAIL // callback (-1)
|
|
};
|
|
|
|
|
|
const ackOp PROGMEM READ_BIT_PROG[] = {
|
|
BASELINE,
|
|
V1, WACK, // validate bit is 1
|
|
ITC1, // if acked, callback(1)
|
|
V0, WACK, // validate bit is zero
|
|
ITC0, // if acked callback 0
|
|
FAIL // bit not readable
|
|
};
|
|
|
|
const ackOp PROGMEM WRITE_BYTE_PROG[] = {
|
|
BASELINE,
|
|
WB,WACK, // Write
|
|
VB,WACK, // validate byte
|
|
ITC1, // if ok callback (1)
|
|
FAIL // callback (-1)
|
|
};
|
|
|
|
|
|
const ackOp PROGMEM READ_CV_PROG[] = {
|
|
BASELINE,
|
|
STARTMERGE, //clear bit and byte values ready for merge pass
|
|
// each bit is validated against 0 and the result inverted in MERGE
|
|
// this is because there tend to be more zeros in cv values than ones.
|
|
// There is no need for one validation as entire byte is validated at the end
|
|
V0, WACK, MERGE, // read and merge bit 0
|
|
V0, WACK, MERGE, // read and merge bit 1 etc
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
VB, WACK, ITCB, // verify merged byte and return it if acked ok
|
|
FAIL }; // verification failed
|
|
|
|
|
|
const ackOp PROGMEM LOCO_ID_PROG[] = {
|
|
BASELINE,
|
|
SETCV,(ackOp)29,
|
|
SETBIT,(ackOp)5,
|
|
V0, WACK, ITSKIP, // Skip to SKIPTARGET if bit 5 of CV29 is zero
|
|
// Long locoid
|
|
SETCV, (ackOp)17, // CV 17 is part of locoid
|
|
STARTMERGE,
|
|
V0, WACK, MERGE, // read and merge bit 1 etc
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
|
|
STASHLOCOID, // keep stashed cv 17 for later
|
|
// Read 2nd part from CV 18
|
|
SETCV, (ackOp)18,
|
|
STARTMERGE,
|
|
V0, WACK, MERGE, // read and merge bit 1 etc
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
|
|
COMBINELOCOID, // Combile byte with stash to make long locoid and callback
|
|
|
|
// ITSKIP Skips to here if CV 29 bit 5 was zero. so read CV 1 and return that
|
|
SKIPTARGET,
|
|
SETCV, (ackOp)1,
|
|
STARTMERGE,
|
|
V0, WACK, MERGE, // read and merge bit 1 etc
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
V0, WACK, MERGE,
|
|
VB, WACK, ITCB, // verify merged byte and callback
|
|
FAIL
|
|
};
|
|
|
|
|
|
// On the following prog-track functions blocking defaults to false.
|
|
// blocking=true forces the API to block, waiting for the response and invoke the callback BEFORE returning.
|
|
// During that wait, other parts of the system will be unresponsive.
|
|
// blocking =false means the callback will be called some time after the API returns (typically a few tenths of a second)
|
|
// but that would be very inconvenient in a Wifi situaltion where the stream becomes
|
|
// unuavailable immediately after the API rerturns.
|
|
|
|
void DCC::writeCVByte(int cv, byte byteValue, ACK_CALLBACK callback, bool blocking) {
|
|
ackManagerSetup(cv, byteValue, WRITE_BYTE_PROG, callback, blocking);
|
|
}
|
|
|
|
|
|
void DCC::writeCVBit(int cv, byte bitNum, bool bitValue, ACK_CALLBACK callback, bool blocking) {
|
|
if (bitNum >= 8) callback(-1);
|
|
else ackManagerSetup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback, blocking);
|
|
}
|
|
|
|
|
|
void DCC::readCVBit(int cv, byte bitNum, ACK_CALLBACK callback, bool blocking) {
|
|
if (bitNum >= 8) callback(-1);
|
|
else ackManagerSetup(cv, bitNum,READ_BIT_PROG, callback, blocking);
|
|
}
|
|
|
|
void DCC::readCV(int cv, ACK_CALLBACK callback, bool blocking) {
|
|
ackManagerSetup(cv, 0,READ_CV_PROG, callback, blocking);
|
|
}
|
|
|
|
void DCC::getLocoId(ACK_CALLBACK callback, bool blocking) {
|
|
ackManagerSetup(0,0, LOCO_ID_PROG, callback, blocking);
|
|
}
|
|
|
|
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
|
|
int reg=lookupSpeedTable(cab);
|
|
if (reg>=0) speedTable[reg].loco=0;
|
|
}
|
|
void DCC::forgetAllLocos() { // removes all speed reminders
|
|
for (int i=0;i<MAX_LOCOS;i++) speedTable[i].loco=0;
|
|
}
|
|
|
|
void DCC::setDebug(bool on) {
|
|
debugMode=on;
|
|
}
|
|
|
|
byte DCC::loopStatus=0;
|
|
|
|
void DCC::loop() {
|
|
DCCWaveform::loop(); // power overload checks
|
|
ackManagerLoop(false); // maintain prog track ack manager
|
|
issueReminders();
|
|
}
|
|
|
|
void DCC::issueReminders() {
|
|
// if the main track transmitter still has a pending packet, skip this time around.
|
|
if ( DCCWaveform::mainTrack.packetPending) return;
|
|
|
|
// This loop searches for a loco in the speed table starting at nextLoco and cycling back around
|
|
for (int reg=0;reg<MAX_LOCOS;reg++) {
|
|
int slot=reg+nextLoco;
|
|
if (slot>=MAX_LOCOS) slot-=MAX_LOCOS;
|
|
if (speedTable[slot].loco > 0) {
|
|
// have found the next loco to remind
|
|
// issueReminder will return true if this loco is completed (ie speed and functions)
|
|
if (issueReminder(slot)) nextLoco=slot+1;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool DCC::issueReminder(int reg) {
|
|
long functions=speedTable[reg].functions;
|
|
int loco=speedTable[reg].loco;
|
|
byte flags=speedTable[reg].groupFlags;
|
|
|
|
switch (loopStatus) {
|
|
case 0:
|
|
// DIAG(F("\nReminder %d speed %d"),loco,speedTable[reg].speedCode);
|
|
setThrottle2(loco, speedTable[reg].speedCode);
|
|
break;
|
|
case 1: // remind function group 1 (F0-F4)
|
|
if (flags & FN_GROUP_1)
|
|
setFunctionInternal(loco,0, 128 | ((functions>>1)& 0x0F) | ((functions & 0x01)<<4));
|
|
break;
|
|
case 2: // remind function group 2 F5-F8
|
|
if (flags & FN_GROUP_2)
|
|
setFunctionInternal(loco,0, 176 + ((functions>>5)& 0x0F));
|
|
break;
|
|
case 3: // remind function group 3 F9-F12
|
|
if (flags & FN_GROUP_3)
|
|
setFunctionInternal(loco,0, 160 + ((functions>>9)& 0x0F));
|
|
break;
|
|
case 4: // remind function group 4 F13-F20
|
|
if (flags & FN_GROUP_4)
|
|
setFunctionInternal(loco,222, ((functions>>13)& 0xFF));
|
|
flags&= ~FN_GROUP_4; // dont send them again
|
|
break;
|
|
case 5: // remind function group 5 F21-F28
|
|
if (flags & FN_GROUP_5)
|
|
setFunctionInternal(loco,223, ((functions>>21)& 0xFF));
|
|
flags&= ~FN_GROUP_5; // dont send them again
|
|
break;
|
|
}
|
|
loopStatus++;
|
|
// if we reach status 6 then this loco is done so
|
|
// reset status to 0 for next loco and return true so caller
|
|
// moves on to next loco.
|
|
if (loopStatus>5) loopStatus=0;
|
|
return loopStatus==0;
|
|
}
|
|
|
|
|
|
|
|
|
|
///// Private helper functions below here /////////////////////
|
|
|
|
byte DCC::cv1(byte opcode, int cv) {
|
|
cv--;
|
|
return (highByte(cv) & (byte)0x03) | opcode;
|
|
}
|
|
byte DCC::cv2(int cv) {
|
|
cv--;
|
|
return lowByte(cv);
|
|
}
|
|
|
|
int DCC::lookupSpeedTable(int locoId) {
|
|
// determine speed reg for this loco
|
|
int firstEmpty = MAX_LOCOS;
|
|
int reg;
|
|
for (reg = 0; reg < MAX_LOCOS; reg++) {
|
|
if (speedTable[reg].loco == locoId) break;
|
|
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg;
|
|
}
|
|
if (reg == MAX_LOCOS) reg = firstEmpty;
|
|
if (reg >= MAX_LOCOS) {
|
|
DIAG(F("\nToo many locos\n"));
|
|
return -1;
|
|
}
|
|
if (reg==firstEmpty){
|
|
speedTable[reg].loco = locoId;
|
|
speedTable[reg].speedCode=128; // default direction forward
|
|
speedTable[reg].groupFlags=0;
|
|
speedTable[reg].functions=0;
|
|
}
|
|
return reg;
|
|
}
|
|
|
|
void DCC::updateLocoReminder(int loco, byte speedCode) {
|
|
|
|
if (loco==0) {
|
|
// broadcast message
|
|
for (int reg = 0; reg < MAX_LOCOS; reg++) speedTable[reg].speedCode = speedCode;
|
|
return;
|
|
}
|
|
|
|
// determine speed reg for this loco
|
|
int reg=lookupSpeedTable(loco);
|
|
if (reg>=0) speedTable[reg].speedCode = speedCode;
|
|
}
|
|
|
|
DCC::LOCO DCC::speedTable[MAX_LOCOS];
|
|
int DCC::nextLoco = 0;
|
|
|
|
//ACK MANAGER
|
|
ackOp const * DCC::ackManagerProg;
|
|
byte DCC::ackManagerByte;
|
|
byte DCC::ackManagerStash;
|
|
int DCC::ackManagerCv;
|
|
byte DCC::ackManagerBitNum;
|
|
bool DCC::ackReceived;
|
|
bool DCC::debugMode=false;
|
|
|
|
ACK_CALLBACK DCC::ackManagerCallback;
|
|
|
|
void DCC::ackManagerSetup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback, bool blocking) {
|
|
ackManagerCv = cv;
|
|
ackManagerProg = program;
|
|
ackManagerByte = byteValueOrBitnum;
|
|
ackManagerBitNum=byteValueOrBitnum;
|
|
ackManagerCallback = callback;
|
|
if (blocking) ackManagerLoop(blocking);
|
|
}
|
|
|
|
const byte RESET_MIN=8; // tuning of reset counter before sending message
|
|
|
|
// checkRessets return true if the caller should yield back to loop and try later.
|
|
bool DCC::checkResets(bool blocking) {
|
|
if (blocking) {
|
|
// must block waiting for restest to be issued
|
|
while(DCCWaveform::progTrack.sentResetsSincePacket < RESET_MIN);
|
|
return false; // caller need not yield
|
|
}
|
|
return DCCWaveform::progTrack.sentResetsSincePacket < RESET_MIN;
|
|
}
|
|
|
|
void DCC::ackManagerLoop(bool blocking) {
|
|
while (ackManagerProg) {
|
|
byte opcode=pgm_read_byte_near(ackManagerProg);
|
|
|
|
// breaks from this switch will step to next prog entry
|
|
// returns from this switch will stay on same entry
|
|
// (typically waiting for a reset counter or ACK waiting, or when all finished.)
|
|
// if blocking then we must ONLY return AFTER callback issued
|
|
switch (opcode) {
|
|
case BASELINE:
|
|
if (checkResets(blocking)) return;
|
|
DCCWaveform::progTrack.setAckBaseline(debugMode);
|
|
break;
|
|
case W0: // write 0 bit
|
|
case W1: // write 1 bit
|
|
{
|
|
if (checkResets(blocking)) return;
|
|
if (debugMode) DIAG(F("\nW%d cv=%d bit=%d"),opcode==W1, ackManagerCv,ackManagerBitNum);
|
|
byte instruction = WRITE_BIT | (opcode==W1 ? BIT_ON : BIT_OFF) | ackManagerBitNum;
|
|
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction };
|
|
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
|
|
DCCWaveform::progTrack.setAckPending(debugMode);
|
|
}
|
|
break;
|
|
|
|
case WB: // write byte
|
|
{
|
|
if (checkResets(blocking)) return;
|
|
if (debugMode) DIAG(F("\nWB cv=%d value=%d"),ackManagerCv,ackManagerByte);
|
|
byte message[] = {cv1(WRITE_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
|
|
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
|
|
DCCWaveform::progTrack.setAckPending(debugMode);
|
|
}
|
|
break;
|
|
|
|
case VB: // Issue validate Byte packet
|
|
{
|
|
if (checkResets(blocking)) return;
|
|
if (debugMode) DIAG(F("\nVB cv=%d value=%d"),ackManagerCv,ackManagerByte);
|
|
byte message[] = { cv1(VERIFY_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
|
|
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
|
|
DCCWaveform::progTrack.setAckPending(debugMode);
|
|
}
|
|
break;
|
|
|
|
case V0:
|
|
case V1: // Issue validate bit=0 or bit=1 packet
|
|
{
|
|
if (checkResets(blocking)) return;
|
|
if (debugMode) DIAG(F("\nV%d cv=%d bit=%d"),opcode==V1, ackManagerCv,ackManagerBitNum);
|
|
byte instruction = VERIFY_BIT | (opcode==V0?BIT_OFF:BIT_ON) | ackManagerBitNum;
|
|
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction };
|
|
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), PROG_REPEATS);
|
|
DCCWaveform::progTrack.setAckPending(debugMode);
|
|
}
|
|
break;
|
|
|
|
case WACK: // wait for ack (or absence of ack)
|
|
{
|
|
byte ackState=2; // keep polling
|
|
if (blocking) {
|
|
while(ackState==2) ackState=DCCWaveform::progTrack.getAck(debugMode);
|
|
}
|
|
else {
|
|
ackState=DCCWaveform::progTrack.getAck(debugMode);
|
|
if (ackState==2) return; // keep polling
|
|
}
|
|
ackReceived=ackState==1;
|
|
break; // we have a genuine ACK result
|
|
}
|
|
case ITC0:
|
|
case ITC1: // If True Callback(0 or 1) (if prevous WACK got an ACK)
|
|
if (ackReceived) {
|
|
ackManagerProg = NULL; // all done now
|
|
callback(opcode==ITC0?0:1);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case ITCB: // If True callback(byte)
|
|
if (ackReceived) {
|
|
ackManagerProg = NULL; // all done now
|
|
callback(ackManagerByte);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case NAKFAIL: // If nack callback(-1)
|
|
if (!ackReceived) {
|
|
ackManagerProg = NULL; // all done now
|
|
callback(-1);
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case FAIL: // callback(-1)
|
|
ackManagerProg = NULL;
|
|
callback(-1);
|
|
return;
|
|
|
|
case STARTMERGE:
|
|
ackManagerBitNum=7;
|
|
ackManagerByte=0;
|
|
break;
|
|
|
|
case MERGE: // Merge previous Validate zero wack response with byte value and update bit number (use for reading CV bytes)
|
|
ackManagerByte <<= 1;
|
|
// ackReceived means bit is zero.
|
|
if (!ackReceived) ackManagerByte |= 1;
|
|
ackManagerBitNum--;
|
|
break;
|
|
|
|
case SETBIT:
|
|
ackManagerProg++;
|
|
ackManagerBitNum=pgm_read_byte_near(ackManagerProg);
|
|
break;
|
|
|
|
case SETCV:
|
|
ackManagerProg++;
|
|
ackManagerCv=pgm_read_byte_near(ackManagerProg);
|
|
break;
|
|
|
|
case STASHLOCOID:
|
|
ackManagerStash=ackManagerByte; // stash value from CV17
|
|
break;
|
|
|
|
case COMBINELOCOID:
|
|
// ackManagerStash is cv17, ackManagerByte is CV 18
|
|
ackManagerProg=NULL;
|
|
callback( ackManagerByte + ((ackManagerStash - 192) << 8));
|
|
return;
|
|
|
|
case ITSKIP:
|
|
if (!ackReceived) break;
|
|
// SKIP opcodes until SKIPTARGET found
|
|
while (opcode!=SKIPTARGET) {
|
|
ackManagerProg++;
|
|
opcode=pgm_read_byte_near(ackManagerProg);
|
|
}
|
|
break;
|
|
case SKIPTARGET:
|
|
break;
|
|
default:
|
|
DIAG(F("!! ackOp %d FAULT!!"),opcode);
|
|
ackManagerProg=NULL;
|
|
callback( -1);
|
|
return;
|
|
|
|
} // end of switch
|
|
ackManagerProg++;
|
|
}
|
|
}
|
|
void DCC::callback(int value) {
|
|
if (debugMode) DIAG(F("\nCallback(%d)\n"),value);
|
|
(ackManagerCallback)( value);
|
|
}
|