1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-23 08:06:13 +01:00
CommandStation-EX/DCCTimerESP.cpp
2024-04-05 14:05:12 +02:00

318 lines
9.1 KiB
C++

/*
* © 2020-2022 Harald Barth
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
// ATTENTION: this file only compiles on an ESP8266 and ESP32
// On ESP32 we do not even use the functions but they are here for completeness sake
// Please refer to DCCTimer.h for general comments about how this class works
// This is to avoid repetition and duplication.
#ifdef ARDUINO_ARCH_ESP8266
#include "DCCTimer.h"
INTERRUPT_CALLBACK interruptHandler=0;
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
interruptHandler=callback;
timer1_disable();
// There seem to be differnt ways to attach interrupt handler
// ETS_FRC_TIMER1_INTR_ATTACH(NULL, NULL);
// ETS_FRC_TIMER1_NMI_INTR_ATTACH(interruptHandler);
// Let us choose the one from the API
timer1_attachInterrupt(interruptHandler);
// not exactly sure of order:
timer1_enable(TIM_DIV1, TIM_EDGE, TIM_LOOP);
timer1_write(CLOCK_CYCLES);
}
// We do not support to use PWM to make the Waveform on ESP
bool IRAM_ATTR DCCTimer::isPWMPin(byte pin) {
return false;
}
void IRAM_ATTR DCCTimer::setPWM(byte pin, bool high) {
}
void IRAM_ATTR DCCTimer::clearPWM() {
}
// Fake this as it should not be used
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
mac[0] = 0xFE;
mac[1] = 0xBE;
mac[2] = 0xEF;
mac[3] = 0xC0;
mac[4] = 0xFF;
mac[5] = 0xEE;
}
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
// Return low memory value...
int DCCTimer::getMinimumFreeMemory() {
noInterrupts(); // Disable interrupts to get volatile value
int retval = minimum_free_memory;
interrupts();
return retval;
}
int DCCTimer::freeMemory() {
return ESP.getFreeHeap();
}
#endif
////////////////////////////////////////////////////////////////////////
#ifdef ARDUINO_ARCH_ESP32
#include "DIAG.h"
#include <driver/adc.h>
#include <soc/sens_reg.h>
#include <soc/sens_struct.h>
#undef ADC_INPUT_MAX_VALUE
#define ADC_INPUT_MAX_VALUE 4095 // 12 bit ADC
#define pinToADC1Channel(X) (adc1_channel_t)(((X) > 35) ? (X)-36 : (X)-28)
int IRAM_ATTR local_adc1_get_raw(int channel) {
uint16_t adc_value;
SENS.sar_meas_start1.sar1_en_pad = (1 << channel); // only one channel is selected
while (SENS.sar_slave_addr1.meas_status != 0);
SENS.sar_meas_start1.meas1_start_sar = 0;
SENS.sar_meas_start1.meas1_start_sar = 1;
while (SENS.sar_meas_start1.meas1_done_sar == 0);
adc_value = SENS.sar_meas_start1.meas1_data_sar;
return adc_value;
}
#include "DCCTimer.h"
INTERRUPT_CALLBACK interruptHandler=0;
// https://www.visualmicro.com/page/Timer-Interrupts-Explained.aspx
portMUX_TYPE timerMux = portMUX_INITIALIZER_UNLOCKED;
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
// This should not be called on ESP32 so disable it
return;
interruptHandler = callback;
hw_timer_t *timer = NULL;
timer = timerBegin(0, 2, true); // prescaler can be 2 to 65536 so choose 2
timerAttachInterrupt(timer, interruptHandler, true);
timerAlarmWrite(timer, CLOCK_CYCLES / 6, true); // divide by prescaler*3 (Clockbase is 80Mhz and not F_CPU 240Mhz)
timerAlarmEnable(timer);
}
// We do not support to use PWM to make the Waveform on ESP
bool IRAM_ATTR DCCTimer::isPWMPin(byte pin) {
return false;
}
void IRAM_ATTR DCCTimer::setPWM(byte pin, bool high) {
}
void IRAM_ATTR DCCTimer::clearPWM() {
}
// Fake this as it should not be used
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
mac[0] = 0xFE;
mac[1] = 0xBE;
mac[2] = 0xEF;
mac[3] = 0xC0;
mac[4] = 0xFF;
mac[5] = 0xEE;
}
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
// Return low memory value...
int DCCTimer::getMinimumFreeMemory() {
noInterrupts(); // Disable interrupts to get volatile value
int retval = minimum_free_memory;
interrupts();
return retval;
}
int DCCTimer::freeMemory() {
return ESP.getFreeHeap();
}
void DCCTimer::reset() {
ESP.restart();
}
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
if (f >= 16)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, f);
/*
else if (f == 7) // not used on ESP32
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 62500);
*/
else if (f >= 4)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 32000);
else if (f >= 3)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 16000);
else if (f >= 2)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 3400);
else if (f == 1)
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 480);
else
DCCTimer::DCCEXanalogWriteFrequencyInternal(pin, 131);
}
#include "esp32-hal.h"
#include "soc/soc_caps.h"
#ifdef SOC_LEDC_SUPPORT_HS_MODE
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM<<1)
#else
#define LEDC_CHANNELS (SOC_LEDC_CHANNEL_NUM)
#endif
static int8_t pin_to_channel[SOC_GPIO_PIN_COUNT] = { 0 };
static int cnt_channel = LEDC_CHANNELS;
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t frequency) {
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] != 0) {
ledcSetup(pin_to_channel[pin], frequency, 8);
}
}
}
void DCCTimer::DCCEXledcDetachPin(uint8_t pin) {
DIAG(F("Clear pin %d channel"), pin);
pin_to_channel[pin] = 0;
pinMatrixOutDetach(pin, false, false);
}
static byte LEDCToMux[] = {
LEDC_HS_SIG_OUT0_IDX,
LEDC_HS_SIG_OUT1_IDX,
LEDC_HS_SIG_OUT2_IDX,
LEDC_HS_SIG_OUT3_IDX,
LEDC_HS_SIG_OUT4_IDX,
LEDC_HS_SIG_OUT5_IDX,
LEDC_HS_SIG_OUT6_IDX,
LEDC_HS_SIG_OUT7_IDX,
LEDC_LS_SIG_OUT0_IDX,
LEDC_LS_SIG_OUT1_IDX,
LEDC_LS_SIG_OUT2_IDX,
LEDC_LS_SIG_OUT3_IDX,
LEDC_LS_SIG_OUT4_IDX,
LEDC_LS_SIG_OUT5_IDX,
LEDC_LS_SIG_OUT6_IDX,
LEDC_LS_SIG_OUT7_IDX,
};
void DCCTimer::DCCEXledcAttachPin(uint8_t pin, int8_t channel, bool inverted) {
DIAG(F("Attaching pin %d to channel %d %c"), pin, channel, inverted ? 'I' : ' ');
ledcAttachPin(pin, channel);
if (inverted) // we attach again but with inversion
gpio_matrix_out(pin, LEDCToMux[channel], inverted, 0);
}
void DCCTimer::DCCEXanalogCopyChannel(int8_t frompin, int8_t topin) {
// arguments are signed depending on inversion of pins
DIAG(F("Pin %d copied to %d"), frompin, topin);
bool inverted = false;
if (frompin<0)
frompin = -frompin;
if (topin<0) {
inverted = true;
topin = -topin;
}
int channel = pin_to_channel[frompin]; // after abs(frompin)
pin_to_channel[topin] = channel;
DCCTimer::DCCEXledcAttachPin(topin, channel, inverted);
}
void DCCTimer::DCCEXanalogWrite(uint8_t pin, int value, bool invert) {
// This allocates channels 15, 13, 11, ....
// so each channel gets its own timer.
if (pin < SOC_GPIO_PIN_COUNT) {
if (pin_to_channel[pin] == 0) {
int search_channel;
int n;
if (!cnt_channel) {
log_e("No more PWM channels available! All %u already used", LEDC_CHANNELS);
return;
}
// search for free channels top down
for (search_channel=LEDC_CHANNELS-1; search_channel >=cnt_channel; search_channel -= 2) {
bool chanused = false;
for (n=0; n < SOC_GPIO_PIN_COUNT; n++) {
if (pin_to_channel[n] == search_channel) { // current search_channel used
chanused = true;
break;
}
}
if (chanused)
continue;
if (n == SOC_GPIO_PIN_COUNT) // current search_channel unused
break;
}
if (search_channel >= cnt_channel) {
pin_to_channel[pin] = search_channel;
DIAG(F("Pin %d assigned to search channel %d"), pin, search_channel);
} else {
pin_to_channel[pin] = --cnt_channel; // This sets 15, 13, ...
DIAG(F("Pin %d assigned to new channel %d"), pin, cnt_channel);
--cnt_channel; // Now we are at 14, 12, ...
}
ledcSetup(pin_to_channel[pin], 1000, 8);
DCCEXledcAttachPin(pin, pin_to_channel[pin], invert);
} else {
// This else is only here so we can enable diag
// Pin should be already attached to channel
// DIAG(F("Pin %d assigned to old channel %d"), pin, pin_to_channel[pin]);
}
ledcWrite(pin_to_channel[pin], value);
}
}
void DCCTimer::DCCEXInrushControlOn(uint8_t pin, int duty, bool inverted) {
// this uses hardcoded channel 0
ledcSetup(0, 62500, 8);
DCCEXledcAttachPin(pin, 0, inverted);
ledcWrite(0, duty);
}
int ADCee::init(uint8_t pin) {
pinMode(pin, ANALOG);
adc1_config_width(ADC_WIDTH_BIT_12);
adc1_config_channel_atten(pinToADC1Channel(pin),ADC_ATTEN_DB_11);
return adc1_get_raw(pinToADC1Channel(pin));
}
int16_t ADCee::ADCmax() {
return 4095;
}
/*
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
*/
int ADCee::read(uint8_t pin, bool fromISR) {
return local_adc1_get_raw(pinToADC1Channel(pin));
}
/*
* Scan function that is called from interrupt
*/
void ADCee::scan() {
}
void ADCee::begin() {
}
#endif //ESP32