mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-01-06 19:01:03 +01:00
365 lines
13 KiB
C++
365 lines
13 KiB
C++
/*
|
|
* © 2020, Chris Harlow. All rights reserved.
|
|
* © 2020, Harald Barth.
|
|
*
|
|
* This file is part of Asbelos DCC API
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <Arduino.h>
|
|
|
|
#include "DCCWaveform.h"
|
|
#include "DCCTimer.h"
|
|
#include "DIAG.h"
|
|
#include "freeMemory.h"
|
|
|
|
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
|
|
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
|
|
|
|
bool DCCWaveform::progTrackSyncMain=false;
|
|
bool DCCWaveform::progTrackBoosted=false;
|
|
int DCCWaveform::progTripValue=0;
|
|
volatile uint8_t DCCWaveform::numAckGaps=0;
|
|
volatile uint8_t DCCWaveform::numAckSamples=0;
|
|
uint8_t DCCWaveform::trailingEdgeCounter=0;
|
|
|
|
void DCCWaveform::begin(MotorDriver * mainDriver, MotorDriver * progDriver) {
|
|
mainTrack.motorDriver=mainDriver;
|
|
progTrack.motorDriver=progDriver;
|
|
progTripValue = progDriver->mA2raw(TRIP_CURRENT_PROG); // need only calculate once hence static
|
|
mainTrack.setPowerMode(POWERMODE::OFF);
|
|
progTrack.setPowerMode(POWERMODE::OFF);
|
|
// Fault pin config for odd motor boards (example pololu)
|
|
MotorDriver::commonFaultPin = ((mainDriver->getFaultPin() == progDriver->getFaultPin())
|
|
&& (mainDriver->getFaultPin() != UNUSED_PIN));
|
|
// Only use PWM if both pins are PWM capable. Otherwise JOIN does not work
|
|
MotorDriver::usePWM= mainDriver->isPWMCapable() && progDriver->isPWMCapable();
|
|
DIAG(F("Signal pin config: %S accuracy waveform"),
|
|
MotorDriver::usePWM ? F("high") : F("normal") );
|
|
DCCTimer::begin(DCCWaveform::interruptHandler);
|
|
}
|
|
|
|
void DCCWaveform::loop(bool ackManagerActive) {
|
|
mainTrack.checkPowerOverload(false);
|
|
progTrack.checkPowerOverload(ackManagerActive);
|
|
}
|
|
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("-O3")
|
|
void DCCWaveform::interruptHandler() {
|
|
// call the timer edge sensitive actions for progtrack and maintrack
|
|
// member functions would be cleaner but have more overhead
|
|
byte sigMain=signalTransform[mainTrack.state];
|
|
byte sigProg=progTrackSyncMain? sigMain : signalTransform[progTrack.state];
|
|
|
|
// Set the signal state for both tracks
|
|
mainTrack.motorDriver->setSignal(sigMain);
|
|
progTrack.motorDriver->setSignal(sigProg);
|
|
|
|
// Move on in the state engine
|
|
mainTrack.state=stateTransform[mainTrack.state];
|
|
progTrack.state=stateTransform[progTrack.state];
|
|
|
|
|
|
// WAVE_PENDING means we dont yet know what the next bit is
|
|
if (mainTrack.state==WAVE_PENDING) mainTrack.interrupt2();
|
|
if (progTrack.state==WAVE_PENDING) progTrack.interrupt2();
|
|
else if (progTrack.ackPending) progTrack.checkAck();
|
|
|
|
}
|
|
#pragma GCC push_options
|
|
|
|
// An instance of this class handles the DCC transmissions for one track. (main or prog)
|
|
// Interrupts are marshalled via the statics.
|
|
// A track has a current transmit buffer, and a pending buffer.
|
|
// When the current buffer is exhausted, either the pending buffer (if there is one waiting) or an idle buffer.
|
|
|
|
|
|
// This bitmask has 9 entries as each byte is trasmitted as a zero + 8 bits.
|
|
const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
|
|
|
|
|
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
|
|
isMainTrack = isMain;
|
|
packetPending = false;
|
|
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
|
|
state = WAVE_START;
|
|
// The +1 below is to allow the preamble generator to create the stop bit
|
|
// for the previous packet.
|
|
requiredPreambles = preambleBits+1;
|
|
bytes_sent = 0;
|
|
bits_sent = 0;
|
|
sampleDelay = 0;
|
|
lastSampleTaken = millis();
|
|
ackPending=false;
|
|
}
|
|
|
|
POWERMODE DCCWaveform::getPowerMode() {
|
|
return powerMode;
|
|
}
|
|
|
|
void DCCWaveform::setPowerMode(POWERMODE mode) {
|
|
powerMode = mode;
|
|
bool ison = (mode == POWERMODE::ON);
|
|
motorDriver->setPower( ison);
|
|
}
|
|
|
|
|
|
void DCCWaveform::checkPowerOverload(bool ackManagerActive) {
|
|
if (millis() - lastSampleTaken < sampleDelay) return;
|
|
lastSampleTaken = millis();
|
|
int tripValue= motorDriver->getRawCurrentTripValue();
|
|
if (!isMainTrack && !ackManagerActive && !progTrackSyncMain && !progTrackBoosted)
|
|
tripValue=progTripValue;
|
|
|
|
// Trackname for diag messages later
|
|
const FSH*trackname = isMainTrack ? F("MAIN") : F("PROG");
|
|
switch (powerMode) {
|
|
case POWERMODE::OFF:
|
|
sampleDelay = POWER_SAMPLE_OFF_WAIT;
|
|
break;
|
|
case POWERMODE::ON:
|
|
// Check current
|
|
lastCurrent=motorDriver->getCurrentRaw();
|
|
if (lastCurrent < 0) {
|
|
// We have a fault pin condition to take care of
|
|
lastCurrent = -lastCurrent;
|
|
setPowerMode(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
|
|
if (MotorDriver::commonFaultPin) {
|
|
if (lastCurrent <= tripValue) {
|
|
setPowerMode(POWERMODE::ON); // maybe other track
|
|
}
|
|
// Write this after the fact as we want to turn on as fast as possible
|
|
// because we don't know which output actually triggered the fault pin
|
|
DIAG(F("COMMON FAULT PIN ACTIVE - TOGGLED POWER on %S"), trackname);
|
|
} else {
|
|
DIAG(F("%S FAULT PIN ACTIVE - OVERLOAD"), trackname);
|
|
if (lastCurrent < tripValue) {
|
|
lastCurrent = tripValue; // exaggerate
|
|
}
|
|
}
|
|
}
|
|
if (lastCurrent < tripValue) {
|
|
sampleDelay = POWER_SAMPLE_ON_WAIT;
|
|
if(power_good_counter<100)
|
|
power_good_counter++;
|
|
else
|
|
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
|
|
} else {
|
|
setPowerMode(POWERMODE::OVERLOAD);
|
|
unsigned int mA=motorDriver->raw2mA(lastCurrent);
|
|
unsigned int maxmA=motorDriver->raw2mA(tripValue);
|
|
power_good_counter=0;
|
|
sampleDelay = power_sample_overload_wait;
|
|
DIAG(F("%S TRACK POWER OVERLOAD current=%d max=%d offtime=%d"), trackname, mA, maxmA, sampleDelay);
|
|
if (power_sample_overload_wait >= 10000)
|
|
power_sample_overload_wait = 10000;
|
|
else
|
|
power_sample_overload_wait *= 2;
|
|
}
|
|
break;
|
|
case POWERMODE::OVERLOAD:
|
|
// Try setting it back on after the OVERLOAD_WAIT
|
|
setPowerMode(POWERMODE::ON);
|
|
sampleDelay = POWER_SAMPLE_ON_WAIT;
|
|
// Debug code....
|
|
DIAG(F("%S TRACK POWER RESET delay=%d"), trackname, sampleDelay);
|
|
break;
|
|
default:
|
|
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
|
|
}
|
|
}
|
|
// For each state of the wave nextState=stateTransform[currentState]
|
|
const WAVE_STATE DCCWaveform::stateTransform[]={
|
|
/* WAVE_START -> */ WAVE_PENDING,
|
|
/* WAVE_MID_1 -> */ WAVE_START,
|
|
/* WAVE_HIGH_0 -> */ WAVE_MID_0,
|
|
/* WAVE_MID_0 -> */ WAVE_LOW_0,
|
|
/* WAVE_LOW_0 -> */ WAVE_START,
|
|
/* WAVE_PENDING (should not happen) -> */ WAVE_PENDING};
|
|
|
|
// For each state of the wave, signal pin is HIGH or LOW
|
|
const bool DCCWaveform::signalTransform[]={
|
|
/* WAVE_START -> */ HIGH,
|
|
/* WAVE_MID_1 -> */ LOW,
|
|
/* WAVE_HIGH_0 -> */ HIGH,
|
|
/* WAVE_MID_0 -> */ LOW,
|
|
/* WAVE_LOW_0 -> */ LOW,
|
|
/* WAVE_PENDING (should not happen) -> */ LOW};
|
|
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("-O3")
|
|
void DCCWaveform::interrupt2() {
|
|
// calculate the next bit to be sent:
|
|
// set state WAVE_MID_1 for a 1=bit
|
|
// or WAVE_HIGH_0 for a 0 bit.
|
|
|
|
if (remainingPreambles > 0 ) {
|
|
state=WAVE_MID_1; // switch state to trigger LOW on next interrupt
|
|
remainingPreambles--;
|
|
// Update free memory diagnostic as we don't have anything else to do this time.
|
|
// Allow for checkAck and its called functions using 22 bytes more.
|
|
updateMinimumFreeMemory(22);
|
|
return;
|
|
}
|
|
|
|
// Wave has gone HIGH but what happens next depends on the bit to be transmitted
|
|
// beware OF 9-BIT MASK generating a zero to start each byte
|
|
state=(transmitPacket[bytes_sent] & bitMask[bits_sent])? WAVE_MID_1 : WAVE_HIGH_0;
|
|
bits_sent++;
|
|
|
|
// If this is the last bit of a byte, prepare for the next byte
|
|
|
|
if (bits_sent == 9) { // zero followed by 8 bits of a byte
|
|
//end of Byte
|
|
bits_sent = 0;
|
|
bytes_sent++;
|
|
// if this is the last byte, prepere for next packet
|
|
if (bytes_sent >= transmitLength) {
|
|
// end of transmission buffer... repeat or switch to next message
|
|
bytes_sent = 0;
|
|
remainingPreambles = requiredPreambles;
|
|
|
|
if (transmitRepeats > 0) {
|
|
transmitRepeats--;
|
|
}
|
|
else if (packetPending) {
|
|
// Copy pending packet to transmit packet
|
|
// a fixed length memcpy is faster than a variable length loop for these small lengths
|
|
// for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
|
|
memcpy( transmitPacket, pendingPacket, sizeof(pendingPacket));
|
|
|
|
transmitLength = pendingLength;
|
|
transmitRepeats = pendingRepeats;
|
|
packetPending = false;
|
|
sentResetsSincePacket=0;
|
|
}
|
|
else {
|
|
// Fortunately reset and idle packets are the same length
|
|
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
|
|
transmitLength = sizeof(idlePacket);
|
|
transmitRepeats = 0;
|
|
if (sentResetsSincePacket<250) sentResetsSincePacket++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#pragma GCC pop_options
|
|
|
|
|
|
// Wait until there is no packet pending, then make this pending
|
|
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
|
|
if (byteCount > MAX_PACKET_SIZE) return; // allow for chksum
|
|
while (packetPending);
|
|
|
|
byte checksum = 0;
|
|
for (byte b = 0; b < byteCount; b++) {
|
|
checksum ^= buffer[b];
|
|
pendingPacket[b] = buffer[b];
|
|
}
|
|
// buffer is MAX_PACKET_SIZE but pendingPacket is one bigger
|
|
pendingPacket[byteCount] = checksum;
|
|
pendingLength = byteCount + 1;
|
|
pendingRepeats = repeats;
|
|
packetPending = true;
|
|
sentResetsSincePacket=0;
|
|
}
|
|
|
|
// Operations applicable to PROG track ONLY.
|
|
// (yes I know I could have subclassed the main track but...)
|
|
|
|
void DCCWaveform::setAckBaseline() {
|
|
if (isMainTrack) return;
|
|
int baseline=motorDriver->getCurrentRaw();
|
|
ackThreshold= baseline + motorDriver->mA2raw(ackLimitmA);
|
|
if (Diag::ACK) DIAG(F("ACK baseline=%d/%dmA Threshold=%d/%dmA Duration between %dus and %dus"),
|
|
baseline,motorDriver->raw2mA(baseline),
|
|
ackThreshold,motorDriver->raw2mA(ackThreshold),
|
|
minAckPulseDuration, maxAckPulseDuration);
|
|
}
|
|
|
|
void DCCWaveform::setAckPending() {
|
|
if (isMainTrack) return;
|
|
ackMaxCurrent=0;
|
|
ackPulseStart=0;
|
|
ackPulseDuration=0;
|
|
ackDetected=false;
|
|
ackCheckStart=millis();
|
|
numAckSamples=0;
|
|
numAckGaps=0;
|
|
ackPending=true; // interrupt routines will now take note
|
|
}
|
|
|
|
byte DCCWaveform::getAck() {
|
|
if (ackPending) return (2); // still waiting
|
|
if (Diag::ACK) DIAG(F("%S after %dmS max=%d/%dmA pulse=%duS samples=%d gaps=%d"),ackDetected?F("ACK"):F("NO-ACK"), ackCheckDuration,
|
|
ackMaxCurrent,motorDriver->raw2mA(ackMaxCurrent), ackPulseDuration, numAckSamples, numAckGaps);
|
|
if (ackDetected) return (1); // Yes we had an ack
|
|
return(0); // pending set off but not detected means no ACK.
|
|
}
|
|
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("-O3")
|
|
void DCCWaveform::checkAck() {
|
|
// This function operates in interrupt() time so must be fast and can't DIAG
|
|
if (sentResetsSincePacket > 6) { //ACK timeout
|
|
ackCheckDuration=millis()-ackCheckStart;
|
|
ackPending = false;
|
|
return;
|
|
}
|
|
|
|
int current=motorDriver->getCurrentRaw();
|
|
numAckSamples++;
|
|
if (current > ackMaxCurrent) ackMaxCurrent=current;
|
|
// An ACK is a pulse lasting between minAckPulseDuration and maxAckPulseDuration uSecs (refer @haba)
|
|
|
|
if (current>ackThreshold) {
|
|
if (trailingEdgeCounter > 0) {
|
|
numAckGaps++;
|
|
trailingEdgeCounter = 0;
|
|
}
|
|
if (ackPulseStart==0) ackPulseStart=micros(); // leading edge of pulse detected
|
|
return;
|
|
}
|
|
|
|
// not in pulse
|
|
if (ackPulseStart==0) return; // keep waiting for leading edge
|
|
|
|
// if we reach to this point, we have
|
|
// detected trailing edge of pulse
|
|
if (trailingEdgeCounter == 0) {
|
|
ackPulseDuration=micros()-ackPulseStart;
|
|
}
|
|
|
|
// but we do not trust it yet and return (which will force another
|
|
// measurement) and first the third time around with low current
|
|
// the ack detection will be finalized.
|
|
if (trailingEdgeCounter < 2) {
|
|
trailingEdgeCounter++;
|
|
return;
|
|
}
|
|
trailingEdgeCounter = 0;
|
|
|
|
if (ackPulseDuration>=minAckPulseDuration && ackPulseDuration<=maxAckPulseDuration) {
|
|
ackCheckDuration=millis()-ackCheckStart;
|
|
ackDetected=true;
|
|
ackPending=false;
|
|
transmitRepeats=0; // shortcut remaining repeat packets
|
|
return; // we have a genuine ACK result
|
|
}
|
|
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
|
|
}
|
|
#pragma GCC pop_options
|