1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-11 13:21:01 +01:00
CommandStation-EX/TrackManager.cpp
2022-03-31 22:19:13 +01:00

302 lines
10 KiB
C++

/*
* © 2022 Chris Harlow
* All rights reserved.
*
* This file is part of DCC++EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "TrackManager.h"
#include "FSH.h"
#include "DCCWaveform.h"
#include "DCC.h"
#include "MotorDriver.h"
#include "DIAG.h"
// Virtualised Motor shield multi-track hardware Interface
#define FOR_EACH_TRACK(t) for (byte t=0;t<=lastTrack;t++)
#define APPLY_BY_MODE(findmode,function) \
FOR_EACH_TRACK(t) \
if (trackMode[t]==findmode) \
track[t]->function;
const int16_t HASH_KEYWORD_PROG = -29718;
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_OFF = 22479;
const int16_t HASH_KEYWORD_DC = 2183;
const int16_t HASH_KEYWORD_DCX = 6463; // DC reversed polarity
const int16_t HASH_KEYWORD_A = 65; // parser makes single chars the ascii.
MotorDriver * TrackManager::track[MAX_TRACKS];
TRACK_MODE TrackManager::trackMode[MAX_TRACKS];
int16_t TrackManager::trackDCAddr[MAX_TRACKS];
POWERMODE TrackManager::mainPowerGuess=POWERMODE::OFF;
byte TrackManager::lastTrack=0;
bool TrackManager::progTrackSyncMain=false;
bool TrackManager::progTrackBoosted=false;
int16_t TrackManager::joinRelay=UNUSED_PIN;
// The setup call is done this way so that the tracks can be in a list
// from the config... the tracks default to NULL in the declaration
void TrackManager::Setup(const FSH * shieldname,
MotorDriver * track0, MotorDriver * track1, MotorDriver * track2,
MotorDriver * track3, MotorDriver * track4, MotorDriver * track5,
MotorDriver * track6, MotorDriver * track7 ) {
addTrack(0,track0);
addTrack(1,track1);
addTrack(2,track2);
addTrack(3,track3);
addTrack(4,track4);
addTrack(5,track5);
addTrack(6,track6);
addTrack(7,track7);
// Default the first 2 tracks (which may be null) and perform HA waveform check.
setTrackMode(0,TRACK_MODE_MAIN);
setTrackMode(1,TRACK_MODE_PROG);
// TODO Fault pin config for odd motor boards (example pololu)
// MotorDriver::commonFaultPin = ((mainDriver->getFaultPin() == progDriver->getFaultPin())
// && (mainDriver->getFaultPin() != UNUSED_PIN));
DIAG(F("Signal pin config: %S accuracy waveform"),
MotorDriver::usePWM ? F("high") : F("normal") );
DCC::begin(shieldname);
}
void TrackManager::addTrack(byte t, MotorDriver* driver) {
track[t]=driver;
trackMode[t]=TRACK_MODE_OFF;
if (driver) {
lastTrack=t;
track[t]->setPower(POWERMODE::OFF);
}
}
void TrackManager::setDCCSignal( bool on) {
APPLY_BY_MODE(TRACK_MODE_MAIN,setSignal(on));
}
void TrackManager::setCutout( bool on) {
(void) on;
// TODO APPLY_BY_MODE(TRACK_MODE_MAIN,setCutout(on));
}
void TrackManager::setPROGSignal( bool on) {
APPLY_BY_MODE(TRACK_MODE_PROG,setSignal(on));
}
void TrackManager::setDCSignal(int16_t cab, byte speedbyte) {
FOR_EACH_TRACK(t) {
if (trackDCAddr[t]!=cab) continue;
if (trackMode[t]==TRACK_MODE_DC) track[t]->setDCSignal(speedbyte);
else if (trackMode[t]==TRACK_MODE_DCX) track[t]->setDCSignal(speedbyte ^ 128);
}
}
bool TrackManager::setTrackMode(byte trackToSet, TRACK_MODE mode, int16_t dcAddr) {
if (trackToSet>lastTrack || track[trackToSet]==NULL) return false;
// DC tracks require a motorDriver that can set brake!
if ((mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX)
&& !track[trackToSet]->canBrake()) {
DIAG(F("No brake:no DC"));
return false;
}
if (mode==TRACK_MODE_PROG) {
// only allow 1 track to be prog
FOR_EACH_TRACK(t)
if (trackMode[t]==TRACK_MODE_PROG) {
track[t]->setPower(POWERMODE::OFF);
trackMode[t]=TRACK_MODE_OFF;
}
}
trackMode[trackToSet]=mode;
trackDCAddr[trackToSet]=dcAddr;
// When a track is switched, we must clear any side effects of its previous
// state, otherwise trains run away or just dont move.
if (mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX) {
// DC tracks need to be given speed of the throttle for that cab address
// otherwise will not match other tracks on same cab.
// This also needs to allow for inverted DCX
applyDCSpeed(trackToSet);
}
else {
// DCC tracks need to have the brake set off or they will not work.
track[trackToSet]->setBrake(false);
}
// re-evaluate HighAccuracy mode
// We can only do this is all main and prog tracks agree
bool canDo=true;
FOR_EACH_TRACK(t)
if (trackMode[t]==TRACK_MODE_MAIN ||trackMode[t]==TRACK_MODE_PROG)
canDo &= track[t]->isPWMCapable();
MotorDriver::usePWM=canDo;
// Normal running tracks are set to the global power state
track[trackToSet]->setPower(
(mode==TRACK_MODE_MAIN || mode==TRACK_MODE_DC || mode==TRACK_MODE_DCX) ?
mainPowerGuess : POWERMODE::OFF);
return true;
}
void TrackManager::applyDCSpeed(byte t) {
int16_t speed1=DCC::getThrottleSpeed(trackDCAddr[t]);
byte speedByte;
if (speed1<0) speedByte=0;
else {
speedByte=speed1;
bool direction=DCC::getThrottleDirection(trackDCAddr[t]);
if (trackMode[t]==TRACK_MODE_DCX) direction=!direction;
if (direction) speedByte|=0x80;
}
track[t]->setDCSignal(speedByte);
}
bool TrackManager::parseJ(Print *stream, int16_t params, int16_t p[])
{
if (params==0) { // <=> List track assignments
FOR_EACH_TRACK(t)
if (track[t]!=NULL) {
StringFormatter::send(stream,F("<= %c "),'A'+t);
switch(trackMode[t]) {
case TRACK_MODE_MAIN:
StringFormatter::send(stream,F("MAIN"));
break;
case TRACK_MODE_PROG:
StringFormatter::send(stream,F("PROG"));
break;
case TRACK_MODE_OFF:
StringFormatter::send(stream,F("OFF"));
break;
case TRACK_MODE_DC:
StringFormatter::send(stream,F("DC %d"),trackDCAddr[t]);
break;
case TRACK_MODE_DCX:
StringFormatter::send(stream,F("DCX %d"),trackDCAddr[t]);
break;
default:
break; // unknown, dont care
}
StringFormatter::send(stream,F(">\n"));
}
return true;
}
p[0]-=HASH_KEYWORD_A; // convert A... to 0....
if (params>1 && (p[0]<0 || p[0]>=MAX_TRACKS))
return false;
if (params==2 && p[1]==HASH_KEYWORD_MAIN) // <= id MAIN>
return setTrackMode(p[0],TRACK_MODE_MAIN);
if (params==2 && p[1]==HASH_KEYWORD_PROG) // <= id PROG>
return setTrackMode(p[0],TRACK_MODE_PROG);
if (params==2 && p[1]==HASH_KEYWORD_OFF) // <= id OFF>
return setTrackMode(p[0],TRACK_MODE_OFF);
if (params==3 && p[1]==HASH_KEYWORD_DC && p[2]>0) // <= id DC cab>
return setTrackMode(p[0],TRACK_MODE_DC,p[2]);
if (params==3 && p[1]==HASH_KEYWORD_DCX && p[2]>0) // <= id DCX cab>
return setTrackMode(p[0],TRACK_MODE_DCX,p[2]);
return false;
}
byte TrackManager::nextCycleTrack=MAX_TRACKS;
void TrackManager::loop() {
DCCWaveform::loop();
DCCACK::loop();
bool dontLimitProg=DCCACK::isActive() || progTrackSyncMain || progTrackBoosted;
nextCycleTrack++;
if (nextCycleTrack>lastTrack) nextCycleTrack=0;
if (track[nextCycleTrack]==NULL) return;
MotorDriver * motorDriver=track[nextCycleTrack];
bool useProgLimit=dontLimitProg? false: trackMode[nextCycleTrack]==TRACK_MODE_PROG;
motorDriver->checkPowerOverload(useProgLimit, nextCycleTrack);
}
MotorDriver * TrackManager::getProgDriver() {
FOR_EACH_TRACK(t)
if (trackMode[t]==TRACK_MODE_PROG) return track[t];
return NULL;
}
void TrackManager::setPower2(bool setProg,POWERMODE mode) {
if (!setProg) mainPowerGuess=mode;
FOR_EACH_TRACK(t) {
MotorDriver * driver=track[t];
if (!driver) continue;
switch (trackMode[t]) {
case TRACK_MODE_MAIN:
if (setProg) break;
// toggle brake before turning power on - resets overcurrent error
// on the Pololu board if brake is wired to ^D2.
driver->setBrake(true);
driver->setBrake(false); // DCC runs with brake off
driver->setPower(mode);
break;
case TRACK_MODE_DC:
case TRACK_MODE_DCX:
if (setProg) break;
driver->setBrake(true); // DC starts with brake on
applyDCSpeed(t); // speed match DCC throttles
driver->setPower(mode);
break;
case TRACK_MODE_PROG:
if (!setProg) break;
driver->setBrake(true);
driver->setBrake(false);
driver->setPower(mode);
break;
case TRACK_MODE_OFF:
break;
}
}
}
POWERMODE TrackManager::getProgPower() {
FOR_EACH_TRACK(t)
if (trackMode[t]==TRACK_MODE_PROG)
return track[t]->getPower();
return POWERMODE::OFF;
}
void TrackManager::setJoinRelayPin(byte joinRelayPin) {
joinRelay=joinRelayPin;
if (joinRelay!=UNUSED_PIN) {
pinMode(joinRelay,OUTPUT);
digitalWrite(joinRelay,LOW); // LOW is relay disengaged
}
}
void TrackManager::setJoin(bool joined) {
progTrackSyncMain=joined;
if (joinRelay!=UNUSED_PIN) digitalWrite(joinRelay,joined?HIGH:LOW);
}