mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-01-23 02:58:52 +01:00
3a8c83afa6
Required for JMRI interface.
251 lines
7.1 KiB
C++
251 lines
7.1 KiB
C++
#include <Arduino.h>
|
|
#include "Hardware.h"
|
|
#include "DCCWaveform.h"
|
|
#include "DIAG.h"
|
|
#include "Railcom.h"
|
|
DCCWaveform DCCWaveform::mainTrack(PREAMBLE_BITS_MAIN, true);
|
|
DCCWaveform DCCWaveform::progTrack(PREAMBLE_BITS_PROG, false);
|
|
|
|
void DCCWaveform::begin() {
|
|
Hardware::init();
|
|
Hardware::setCallback(58, interruptHandler);
|
|
mainTrack.beginTrack();
|
|
progTrack.beginTrack();
|
|
}
|
|
|
|
void DCCWaveform::loop() {
|
|
mainTrack.checkPowerOverload();
|
|
progTrack.checkPowerOverload();
|
|
}
|
|
|
|
|
|
// static //
|
|
void DCCWaveform::interruptHandler() {
|
|
// call the timer edge sensitive actions for progtrack and maintrack
|
|
bool mainCall2 = mainTrack.interrupt1();
|
|
bool progCall2 = progTrack.interrupt1();
|
|
|
|
// call (if necessary) the procs to get the current bits
|
|
// these must complete within 50microsecs of the interrupt
|
|
// but they are only called ONCE PER BIT TRANSMITTED
|
|
// after the rising edge of the signal
|
|
if (mainCall2) mainTrack.interrupt2();
|
|
if (progCall2) progTrack.interrupt2();
|
|
}
|
|
|
|
|
|
// An instance of this class handles the DCC transmissions for one track. (main or prog)
|
|
// Interrupts are marshalled via the statics.
|
|
// A track has a current transmit buffer, and a pending buffer.
|
|
// When the current buffer is exhausted, either the pending buffer (if there is one waiting) or an idle buffer.
|
|
|
|
|
|
// This bitmask has 9 entries as each byte is trasmitted as a zero + 8 bits.
|
|
const byte bitMask[] = {0x00, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
|
|
|
|
|
|
DCCWaveform::DCCWaveform( byte preambleBits, bool isMain) {
|
|
// establish appropriate pins
|
|
isMainTrack = isMain;
|
|
packetPending = false;
|
|
memcpy(transmitPacket, idlePacket, sizeof(idlePacket));
|
|
state = 0;
|
|
requiredPreambles = preambleBits;
|
|
bytes_sent = 0;
|
|
bits_sent = 0;
|
|
nextSampleDue = 0;
|
|
|
|
}
|
|
void DCCWaveform::beginTrack() {
|
|
setPowerMode(POWERMODE::ON);
|
|
}
|
|
|
|
POWERMODE DCCWaveform::getPowerMode() {
|
|
return powerMode;
|
|
}
|
|
|
|
void DCCWaveform::setPowerMode(POWERMODE mode) {
|
|
powerMode = mode;
|
|
Hardware::setPower(isMainTrack, mode == POWERMODE::ON);
|
|
if (mode == POWERMODE::ON) delay(200);
|
|
}
|
|
|
|
|
|
void DCCWaveform::checkPowerOverload() {
|
|
if (millis() < nextSampleDue) return;
|
|
int delay;
|
|
|
|
switch (powerMode) {
|
|
case POWERMODE::OFF:
|
|
delay = POWER_SAMPLE_OFF_WAIT;
|
|
break;
|
|
case POWERMODE::ON:
|
|
// Check current
|
|
lastCurrent = Hardware::getCurrentMilliamps(isMainTrack);
|
|
if (lastCurrent < POWER_SAMPLE_MAX) delay = POWER_SAMPLE_ON_WAIT;
|
|
else {
|
|
setPowerMode(POWERMODE::OVERLOAD);
|
|
DIAG(F("\n*** %s TRACK POWER OVERLOAD current=%d max=%d ***\n"), isMainTrack ? "MAIN" : "PROG", lastCurrent, POWER_SAMPLE_MAX);
|
|
delay = POWER_SAMPLE_OVERLOAD_WAIT;
|
|
}
|
|
break;
|
|
case POWERMODE::OVERLOAD:
|
|
// Try setting it back on after the OVERLOAD_WAIT
|
|
setPowerMode(POWERMODE::ON);
|
|
delay = POWER_SAMPLE_ON_WAIT;
|
|
break;
|
|
default:
|
|
delay = 999; // cant get here..meaningless statement to avoid compiler warning.
|
|
}
|
|
nextSampleDue = millis() + delay;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// process time-edge sensitive part of interrupt
|
|
// return true if second level required
|
|
bool DCCWaveform::interrupt1() {
|
|
// NOTE: this must consume transmission buffers even if the power is off
|
|
// otherwise can cause hangs in main loop waiting for the pendingBuffer.
|
|
switch (state) {
|
|
case 0: // start of bit transmission
|
|
Hardware::setSignal(isMainTrack, HIGH);
|
|
checkRailcom();
|
|
state = 1;
|
|
return true; // must call interrupt2 to set currentBit
|
|
|
|
case 1: // 58us after case 0
|
|
if (currentBit) {
|
|
Hardware::setSignal(isMainTrack, LOW);
|
|
state = 0;
|
|
}
|
|
else state = 2;
|
|
break;
|
|
case 2: // 116us after case 0
|
|
Hardware::setSignal(isMainTrack, LOW);
|
|
state = 3;
|
|
break;
|
|
case 3: // finished sending zero bit
|
|
state = 0;
|
|
break;
|
|
}
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
void DCCWaveform::interrupt2() {
|
|
// set currentBit to be the next bit to be sent.
|
|
|
|
if (remainingPreambles > 0 ) {
|
|
currentBit = true;
|
|
remainingPreambles--;
|
|
return;
|
|
}
|
|
|
|
// beware OF 9-BIT MASK generating a zero to start each byte
|
|
currentBit = transmitPacket[bytes_sent] & bitMask[bits_sent];
|
|
bits_sent++;
|
|
|
|
// If this is the last bit of a byte, prepare for the next byte
|
|
|
|
if (bits_sent == 9) { // zero followed by 8 bits of a byte
|
|
//end of Byte
|
|
bits_sent = 0;
|
|
bytes_sent++;
|
|
// if this is the last byte, prepere for next packet
|
|
if (bytes_sent >= transmitLength) {
|
|
// end of transmission buffer... repeat or switch to next message
|
|
bytes_sent = 0;
|
|
remainingPreambles = requiredPreambles;
|
|
|
|
if (transmitRepeats > 0) {
|
|
transmitRepeats--;
|
|
}
|
|
else if (packetPending) {
|
|
// Copy pending packet to transmit packet
|
|
for (int b = 0; b < pendingLength; b++) transmitPacket[b] = pendingPacket[b];
|
|
transmitLength = pendingLength;
|
|
transmitRepeats = pendingRepeats;
|
|
packetPending = false;
|
|
}
|
|
else {
|
|
// Fortunately reset and idle packets are the same length
|
|
memcpy( transmitPacket, isMainTrack ? idlePacket : resetPacket, sizeof(idlePacket));
|
|
transmitLength = sizeof(idlePacket);
|
|
transmitRepeats = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void DCCWaveform::checkRailcom() {
|
|
if (isMainTrack && RAILCOM_CUTOUT) {
|
|
byte preamble = PREAMBLE_BITS_MAIN - remainingPreambles;
|
|
if (preamble == RAILCOM_PREAMBLES_BEFORE_CUTOUT) {
|
|
Railcom::startCutout();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Wait until there is no packet pending, then make this pending
|
|
void DCCWaveform::schedulePacket(const byte buffer[], byte byteCount, byte repeats) {
|
|
if (byteCount >= MAX_PACKET_SIZE) return; // allow for chksum
|
|
while (packetPending);
|
|
|
|
byte checksum = 0;
|
|
for (int b = 0; b < byteCount; b++) {
|
|
checksum ^= buffer[b];
|
|
pendingPacket[b] = buffer[b];
|
|
}
|
|
pendingPacket[byteCount] = checksum;
|
|
pendingLength = byteCount + 1;
|
|
pendingRepeats = repeats;
|
|
packetPending = true;
|
|
}
|
|
|
|
// Wait until there is no packet pending, then make this pending
|
|
bool DCCWaveform::schedulePacketWithAck(const byte buffer[], byte byteCount, byte repeats) {
|
|
|
|
if (isMainTrack) return false;
|
|
int baseline=0;
|
|
for (int i=0;i<ACK_BASELINE_SAMPLES;i++) {
|
|
baseline += Hardware::getCurrentMilliamps(isMainTrack);
|
|
}
|
|
baseline/=ACK_BASELINE_SAMPLES;
|
|
int upTrigger=baseline+ACK_MIN_PULSE;
|
|
|
|
|
|
DIAG(F("\nACK baseline=%d upT=%d "),baseline, upTrigger);
|
|
|
|
schedulePacket(buffer,byteCount,repeats);
|
|
while (packetPending); // wait until transmitter has started transmitting the message
|
|
|
|
unsigned long timeout = millis() + ACK_TIMEOUT;
|
|
int maxCurrent = 0;
|
|
bool result = false;
|
|
int upsamples = 0;
|
|
|
|
|
|
// Monitor looking for an ack signal rise of at least 60mA but keep going for the timeout
|
|
while (timeout > millis()) {
|
|
int current = Hardware::getCurrentMilliamps(isMainTrack);
|
|
maxCurrent = max(maxCurrent, current);
|
|
if (current>upTrigger) {
|
|
result=true;
|
|
upsamples++;
|
|
}
|
|
}
|
|
|
|
// The following DIAG is really useful as it can show how long and how far the
|
|
// current changes during an ACK from the decoder.
|
|
DIAG(F("ack=%d max=%d, up=%d"), result, maxCurrent, upsamples);
|
|
return result;
|
|
}
|
|
|
|
int DCCWaveform::getLastCurrent() {
|
|
return lastCurrent;
|
|
}
|