1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-04-21 12:31:19 +02:00
CommandStation-EX/IO_Modbus.cpp
2024-12-12 14:52:51 -05:00

562 lines
18 KiB
C++

/*
* © 2024, Travis Farmer. All rights reserved.
* © 2024, Chris Bulliner. All rights reserved. https://github.com/CMB27
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "IO_Modbus.h"
#include "defines.h"
uint8_t MBRB::wait() {
while (status==MB_STATUS_PENDING) {
// may as well whistle or something
};
return status;
}
bool MBRB::isBusy() {
if (status==MB_STATUS_PENDING) {
return true;
} else
return false;
}
void MBRB::setReadParams(int nodeID, uint8_t *readBuffer, uint8_t readLen) {
this->nodeID = nodeID;
this->writeLen = 0;
this->readBuffer = readBuffer;
this->readLen = readLen;
this->operation = OPERATION_READ;
this->status = MB_STATUS_OK;
}
void MBRB::setRequestParams(int nodeID, uint8_t *readBuffer, uint8_t readLen,
const uint8_t *writeBuffer, uint8_t writeLen) {
this->nodeID = nodeID;
this->writeBuffer = writeBuffer;
this->writeLen = writeLen;
this->readBuffer = readBuffer;
this->readLen = readLen;
this->operation = OPERATION_REQUEST;
this->status = MB_STATUS_OK;
}
void MBRB::setWriteParams(int nodeID, const uint8_t *writeBuffer, uint8_t writeLen) {
this->nodeID = nodeID;
this->writeBuffer = writeBuffer;
this->writeLen = writeLen;
this->readLen = 0;
this->operation = OPERATION_SEND;
this->status = MB_STATUS_OK;
}
void MBRB::suppressRetries(bool suppress) {
if (suppress)
this->operation |= OPERATION_NORETRY;
else
this->operation &= ~OPERATION_NORETRY;
}
void Modbus::setTransactionId(uint16_t transactionId) {
_setRegister(tcp, 0, transactionId);
}
void Modbus::setProtocolId(uint16_t protocolId) {
_setRegister(tcp, 2, protocolId);
}
void Modbus::setLength(uint16_t length) {
if (length < 3 || length > 254) _setRegister(tcp, 4, 0);
else _setRegister(tcp, 4, length);
}
void Modbus::setUnitId(uint8_t unitId) {
tcp[6] = unitId;
}
void Modbus::setFunctionCode(uint8_t functionCode) {
pdu[0] = functionCode;
}
void Modbus::setDataRegister(uint8_t index, uint16_t value) {
_setRegister(data, index, value);
}
void Modbus::setRtuLen(uint16_t rtuLen) {
setLength(rtuLen - 2);
}
void Modbus::setTcpLen(uint16_t tcpLen) {
setLength(tcpLen - 6);
}
void Modbus::setPduLen(uint16_t pduLen) {
setLength(pduLen + 1);
}
void Modbus::setDataLen(uint16_t dataLen) {
setLength(dataLen + 2);
}
uint16_t Modbus::getTransactionId() {
return _getRegister(tcp, 0);
}
uint16_t Modbus::getProtocolId() {
return _getRegister(tcp, 2);
}
uint16_t Modbus::getLength() {
uint16_t length = _getRegister(tcp, 4);
if (length < 3 || length > 254) return 0;
else return length;
}
uint8_t Modbus::getUnitId() {
return tcp[6];
}
uint8_t Modbus::getFunctionCode() {
return pdu[0];
}
uint16_t Modbus::getDataRegister(uint8_t index) {
return _getRegister(data, index);
}
uint16_t Modbus::getRtuLen() {
uint16_t len = getLength();
if (len == 0) return 0;
else return len + 2;
}
uint16_t Modbus::getTcpLen() {
uint16_t len = getLength();
if (len == 0) return 0;
else return len + 6;
}
uint16_t Modbus::getPduLen() {
uint16_t len = getLength();
if (len == 0) return 0;
else return len - 1;
}
uint16_t Modbus::getDataLen() {
uint16_t len = getLength();
if (len == 0) return 0;
else return len - 2;
}
void Modbus::updateCrc(uint8_t *buf, uint16_t len) {
uint16_t crc = _calculateCrc(buf, len);
buf[len] = lowByte(crc);
buf[len + 1] = highByte(crc);
}
bool Modbus::crcGood(uint8_t *buf, uint16_t len) {
uint16_t aduCrc = buf[len] | (buf[len + 1] << 8);
uint16_t calculatedCrc = _calculateCrc(buf, len);
if (aduCrc == calculatedCrc) return true;
else return false;
}
void Modbus::_setRegister(uint8_t *buf, uint16_t index, uint16_t value) {
buf[index] = highByte(value);
buf[index + 1] = lowByte(value);
}
uint16_t Modbus::_getRegister(uint8_t *buf, uint16_t index) {
return (buf[index] << 8) | buf[index + 1];
}
uint16_t Modbus::_calculateCrc(uint8_t *buf, uint16_t len) {
uint16_t value = 0xFFFF;
for (uint16_t i = 0; i < len; i++) {
value ^= (uint16_t)buf[i];
for (uint8_t j = 0; j < 8; j++) {
bool lsb = value & 1;
value >>= 1;
if (lsb == true) value ^= 0xA001;
}
}
return value;
}
uint16_t div8RndUp(uint16_t value) {
return (value + 7) >> 3;
}
void Modbus::clearRxBuffer() {
unsigned long startMicros = micros();
do {
if (_serialD->available() > 0) {
startMicros = micros();
_serialD->read();
}
} while (micros() - startMicros < _frameTimeout);
}
/************************************************************
* Modbus implementation
************************************************************/
// Constructor for Modbus
Modbus::Modbus(uint8_t busNo, HardwareSerial &serial, unsigned long baud, uint16_t cycleTimeMS, int8_t txPin, int waitA, int waitB) {
_baud = baud;
_serialD = &serial;
_txPin = txPin;
_busNo = busNo;
_cycleTime = cycleTimeMS * 1000UL; // convert from milliseconds to microseconds.
_waitA = waitA;
_waitB = waitB;
if (_waitA < 3) _waitA = 3;
if (_waitB < 2) _waitB = 2;
// Add device to HAL device chain
IODevice::addDevice(this);
// Add bus to Modbus chain.
_nextBus = _busList;
_busList = this;
}
// Main loop function for Modbus.
// Work through list of nodes. For each node, in separate loop entries
// When the slot time has finished, move on to the next device.
void Modbus::_loop(unsigned long currentMicros) {
_currentMicros = currentMicros;
if (_currentNode == NULL) {
_currentNode = _nodeListStart;
}
if (_currentMicros - _cycleStartTime < _cycleTime) return;
_cycleStartTime = _currentMicros;
if (_currentNode == NULL) return;
bool flagOK = true;
#if defined(MODBUS_STM_COMM)
ArduinoPins::fastWriteDigital(MODBUS_STM_COMM,HIGH);
#endif
if (taskCnt > 0) {
// run through tasks
int* taskData[25];
getNextTask(taskData);
switch((int) taskData[0]) {
case 0:
// protection for pulling empty task
break;
case 1: // configure pin
if (taskData[4] == (int*) CONFIGURE_INPUT) {
uint8_t pullup = (uint8_t) taskData[6];
uint8_t outBuffer[6] = {EXIODPUP, (uint8_t) taskData[0], (uint8_t)taskData[3], pullup};
uint8_t responseBuffer[3];
updateCrc(outBuffer,sizeof(outBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(outBuffer, sizeof(outBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
waitReceive = false;
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
responseBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
if (responseBuffer[0] == EXIORDY) {
} else {
DIAG(F("EXIOMB Vpin %u cannot be used as a digital input pin"), (int)taskData[3]);
}
} else DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
} else if (taskData[3] == (int*) CONFIGURE_ANALOGINPUT) {
// TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn
// from IODevice class definition. Not urgent, but each virtual function defined
// means increasing the RAM requirement of every HAL device driver, whether it's relevant
// to the driver or not.
}
break;
case 2: // configure analog in
uint8_t commandBuffer[5] = {EXIOENAN, (uint8_t) taskData[0], (uint8_t) taskData[3]};
uint8_t responseBuffer[3];
updateCrc(commandBuffer,sizeof(commandBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(commandBuffer, sizeof(commandBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
responseBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("EX-IOExpanderMB: Vpin %u on node %d cannot be used as an analogue input pin"), (int) taskData[3], (int) taskData[0]);
}
} else DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
break;
case 3: // write pin
uint8_t digitalOutBuffer[6];
uint8_t responseBuffer[3];
digitalOutBuffer[0] = EXIOWRD;
digitalOutBuffer[1] = (uint8_t) taskData[0];
digitalOutBuffer[2] = (uint8_t) taskData[3];
digitalOutBuffer[3] = (uint8_t) taskData[4];
updateCrc(digitalOutBuffer,sizeof(digitalOutBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(digitalOutBuffer, sizeof(digitalOutBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
responseBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)taskData[3]);
}
} else DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
break;
case 4:
uint8_t servoBuffer[10];
uint8_t responseBuffer[3];
#ifdef DIAG_IO
DIAG(F("Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"),
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
#endif
servoBuffer[0] = EXIOWRAN;
servoBuffer[1] = (uint8_t) taskData[0];
servoBuffer[2] = (uint8_t) taskData[3];
servoBuffer[3] = (uint8_t) taskData[4] & 0xFF;
servoBuffer[4] = (uint8_t) taskData[4] >> 8;
servoBuffer[5] = (uint8_t) taskData[5];
servoBuffer[6] = (uint8_t) taskData[6] & 0xFF;
servoBuffer[7] = (uint8_t) taskData[6] >> 8;
updateCrc(servoBuffer,sizeof(servoBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(servoBuffer, sizeof(servoBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
responseBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < 256);
if (!crcGood(responseBuffer,sizeof(responseBuffer)-2)) {
DIAG(F("EXIOMB node %d CRC Error"), (int) taskData[0]);
_deviceState = DEVSTATE_FAILED;
} else {
if (responseBuffer[0] != EXIORDY) {
DIAG(F("Vpin %u cannot be used as a servo/PWM pin"), (int) taskData[3]);
}
}
}
} else {
// receive states
if (_readState != RDS_IDLE) {
if (_mbrb.isBusy()) return; // If I2C operation still in progress, return
uint8_t status = _mbrb.status;
if (status == I2C_STATUS_OK) { // If device request ok, read input data
// First check if we need to process received data
if (_readState == RDS_ANALOGUE) {
// Read of analogue values was in progress, so process received values
// Here we need to copy the values from input buffer to the analogue value array. We need to
// do this to avoid tearing of the values (i.e. one byte of a two-byte value being changed
// while the value is being read).
memcpy(_currentNode->_analogueInputStates, _currentNode->_analogueInputBuffer, _currentNode->_analoguePinBytes); // Copy I2C input buffer to states
} else if (_readState == RDS_DIGITAL) {
// Read of digital states was in progress, so process received values
// The received digital states are placed directly into the digital buffer on receipt,
// so don't need any further processing at this point (unless we want to check for
// changes and notify them to subscribers, to avoid the need for polling - see IO_GPIOBase.h).
}
} else
reportError(status, false); // report eror but don't go offline.
_readState = RDS_IDLE;
}
if (_currentNode->_numDigitalPins>0 && currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
// be allocated from heap (object state).
_currentNode->_readCommandBuffer[0] = EXIORDD;
updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
_currentNode->_digitalInputStates[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < (_currentNode->_numDigitalPins+7)/8);
if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) DIAG(F("MB CRC error on node %d"), _currentNode->getNodeID());
_lastDigitalRead = currentMicros;
_readState = RDS_DIGITAL;
} else if (_currentNode->_numAnaloguePins>0 && currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
// Issue new read for analogue input states
_currentNode->_readCommandBuffer[0] = EXIORDAN;
updateCrc(_currentNode->_readCommandBuffer,sizeof(_currentNode->_readCommandBuffer)-2);
if (waitReceive == false) {
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, HIGH);
_serialD->write(_currentNode->_readCommandBuffer, sizeof(_currentNode->_readCommandBuffer));
_serialD->flush();
if (_txPin != VPIN_NONE) ArduinoPins::fastWriteDigital(_txPin, LOW);
}
unsigned long startMillis = millis();
if (!_serialD->available()) {
if (waitReceive == true && _waitCounter > _waitA) {
flagOK = false;
} else waitReceive = true;
}
uint16_t len = 0;
unsigned long startMicros = micros();
do {
if (_serialD->available()) {
startMicros = micros();
_currentNode->_analogueInputBuffer[len] = _serialD->read();
len++;
}
} while (micros() - startMicros <= 500 && len < _currentNode->_numAnaloguePins * 2);
if (!crcGood(_currentNode->_digitalInputStates,sizeof(_currentNode->_digitalInputStates)-2)) DIAG(F("MB CRC error on node %d"), _currentNode->getNodeID());
_lastAnalogueRead = currentMicros;
_readState = RDS_ANALOGUE;
}
_currentNode = _currentNode->getNext();
}
#if defined(MODBUS_STM_OK)
if (flagOK == true) {
ArduinoPins::fastWriteDigital(MODBUS_STM_OK,HIGH);
} else {
ArduinoPins::fastWriteDigital(MODBUS_STM_OK,LOW);
}
#endif
#if defined(MODBUS_STM_FAIL)
if (flagOK == false) {
ArduinoPins::fastWriteDigital(MODBUS_STM_FAIL,HIGH);
} else {
ArduinoPins::fastWriteDigital(MODBUS_STM_FAIL,LOW);
}
#endif
#if defined(MODBUS_STM_COMM)
ArduinoPins::fastWriteDigital(MODBUS_STM_COMM,LOW);
#endif
}
// Link to chain of Modbus instances
Modbus *Modbus::_busList = NULL;
/************************************************************
* Modbusnode implementation
************************************************************/
// Constructor for Modbusnode object
Modbusnode::Modbusnode(VPIN firstVpin, int nPins, uint8_t busNo, uint8_t nodeID) {
_firstVpin = firstVpin;
_nPins = nPins;
_busNo = busNo;
_nodeID = nodeID;
if (_nodeID > 255) _nodeID = 255;
// Add this device to HAL device list
IODevice::addDevice(this);
_display();
// Add Modbusnode to Modbus object.
Modbus *bus = Modbus::findBus(_busNo);
if (bus != NULL) {
bus->addNode(this);
return;
}
}