mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-01-12 05:41:02 +01:00
292 lines
9.2 KiB
C++
292 lines
9.2 KiB
C++
/*
|
|
* © 2022 Paul M. Antoine
|
|
* © 2021 Mike S
|
|
* © 2021-2022 Harald Barth
|
|
* © 2021 Fred Decker
|
|
* © 2021 Chris Harlow
|
|
* © 2021 David Cutting
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of Asbelos DCC API
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// ATTENTION: this file only compiles on a SAMD21 based board
|
|
// Please refer to DCCTimer.h for general comments about how this class works
|
|
// This is to avoid repetition and duplication.
|
|
#ifdef ARDUINO_ARCH_SAMD
|
|
|
|
#include "DCCTimer.h"
|
|
#include <wiring_private.h>
|
|
|
|
INTERRUPT_CALLBACK interruptHandler=0;
|
|
|
|
void DCCTimer::begin(INTERRUPT_CALLBACK callback) {
|
|
interruptHandler=callback;
|
|
noInterrupts();
|
|
// Timer setup - setup clock sources first
|
|
REG_GCLK_GENDIV = GCLK_GENDIV_DIV(1) | // Divide 48MHz by 1
|
|
GCLK_GENDIV_ID(4); // Apply to GCLK4
|
|
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization
|
|
|
|
REG_GCLK_GENCTRL = GCLK_GENCTRL_GENEN | // Enable GCLK
|
|
GCLK_GENCTRL_SRC_DFLL48M | // Set the 48MHz clock source
|
|
GCLK_GENCTRL_ID(4); // Select GCLK4
|
|
while (GCLK->STATUS.bit.SYNCBUSY); // Wait for synchronization
|
|
|
|
REG_GCLK_CLKCTRL = GCLK_CLKCTRL_CLKEN | // Enable generic clock
|
|
4 << GCLK_CLKCTRL_GEN_Pos | // Apply to GCLK4
|
|
GCLK_CLKCTRL_ID_TCC0_TCC1; // Feed GCLK to TCC0/1
|
|
while (GCLK->STATUS.bit.SYNCBUSY);
|
|
|
|
// Assume we're using TCC0... as we're bit-bashing the DCC waveform output pins anyway
|
|
// for "normal accuracy" DCC waveform generation. For high accuracy we're going to need
|
|
// to a good deal more. The TCC waveform output pins are mux'd on the SAMD, and output
|
|
// pins for each TCC are only available on certain pins
|
|
TCC0->WAVE.reg = TCC_WAVE_WAVEGEN_NPWM; // Select NPWM as waveform
|
|
while (TCC0->SYNCBUSY.bit.WAVE); // Wait for sync
|
|
|
|
// Set the frequency
|
|
TCC0->CTRLA.reg |= TCC_CTRLA_PRESCALER(TCC_CTRLA_PRESCALER_DIV1_Val);
|
|
TCC0->PER.reg = CLOCK_CYCLES * 2;
|
|
while (TCC0->SYNCBUSY.bit.PER);
|
|
|
|
// Start the timer
|
|
TCC0->CTRLA.bit.ENABLE = 1;
|
|
while (TCC0->SYNCBUSY.bit.ENABLE);
|
|
|
|
// Set the interrupt condition, priority and enable it in the NVIC
|
|
TCC0->INTENSET.reg = TCC_INTENSET_OVF; // Only interrupt on overflow
|
|
int USBprio = NVIC_GetPriority((IRQn_Type) USB_IRQn); // Fetch the USB priority
|
|
NVIC_SetPriority((IRQn_Type)TCC0_IRQn, USBprio); // Match the USB priority
|
|
// NVIC_SetPriority((IRQn_Type)TCC0_IRQn, 0); // Make this highest priority
|
|
NVIC_EnableIRQ((IRQn_Type)TCC0_IRQn); // Enable the interrupt
|
|
interrupts();
|
|
}
|
|
|
|
void DCCTimer::startRailcomTimer(byte brakePin) {
|
|
// TODO: for intended operation see DCCTimerAVR.cpp
|
|
(void) brakePin;
|
|
}
|
|
|
|
void DCCTimer::ackRailcomTimer() {
|
|
// TODO: for intended operation see DCCTimerAVR.cpp
|
|
}
|
|
|
|
// Timer IRQ handlers replace the dummy handlers (in cortex_handlers)
|
|
// copied from rf24 branch
|
|
void TCC0_Handler() {
|
|
if(TCC0->INTFLAG.bit.OVF) {
|
|
TCC0->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag
|
|
interruptHandler();
|
|
}
|
|
}
|
|
|
|
void TCC1_Handler() {
|
|
if(TCC1->INTFLAG.bit.OVF) {
|
|
TCC1->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag
|
|
interruptHandler();
|
|
}
|
|
}
|
|
|
|
void TCC2_Handler() {
|
|
if(TCC2->INTFLAG.bit.OVF) {
|
|
TCC2->INTFLAG.bit.OVF = 1; // writing a 1 clears the flag
|
|
interruptHandler();
|
|
}
|
|
}
|
|
|
|
|
|
bool DCCTimer::isPWMPin(byte pin) {
|
|
//TODO: SAMD whilst this call to digitalPinHasPWM will reveal which pins can do PWM,
|
|
// there's no support yet for High Accuracy, so for now return false
|
|
// return digitalPinHasPWM(pin);
|
|
return false;
|
|
}
|
|
|
|
void DCCTimer::setPWM(byte pin, bool high) {
|
|
// TODO: High Accuracy mode is not supported as yet, and may never need to be
|
|
(void) pin;
|
|
(void) high;
|
|
}
|
|
|
|
void DCCTimer::clearPWM() {
|
|
return;
|
|
}
|
|
|
|
void DCCTimer::getSimulatedMacAddress(byte mac[6]) {
|
|
volatile uint32_t *serno1 = (volatile uint32_t *)0x0080A00C;
|
|
volatile uint32_t *serno2 = (volatile uint32_t *)0x0080A040;
|
|
// volatile uint32_t *serno3 = (volatile uint32_t *)0x0080A044;
|
|
// volatile uint32_t *serno4 = (volatile uint32_t *)0x0080A048;
|
|
|
|
volatile uint32_t m1 = *serno1;
|
|
volatile uint32_t m2 = *serno2;
|
|
mac[0] = m1 >> 8;
|
|
mac[1] = m1 >> 0;
|
|
mac[2] = m2 >> 24;
|
|
mac[3] = m2 >> 16;
|
|
mac[4] = m2 >> 8;
|
|
mac[5] = m2 >> 0;
|
|
}
|
|
|
|
volatile int DCCTimer::minimum_free_memory=__INT_MAX__;
|
|
|
|
// Return low memory value...
|
|
int DCCTimer::getMinimumFreeMemory() {
|
|
noInterrupts(); // Disable interrupts to get volatile value
|
|
int retval = freeMemory();
|
|
interrupts();
|
|
return retval;
|
|
}
|
|
|
|
extern "C" char* sbrk(int incr);
|
|
|
|
int DCCTimer::freeMemory() {
|
|
char top;
|
|
return (int)(&top - reinterpret_cast<char *>(sbrk(0)));
|
|
}
|
|
|
|
void DCCTimer::reset() {
|
|
__disable_irq();
|
|
NVIC_SystemReset();
|
|
while(true) {};
|
|
}
|
|
|
|
void DCCTimer::DCCEXanalogWriteFrequency(uint8_t pin, uint32_t f) {
|
|
}
|
|
void DCCTimer::DCCEXanalogWriteFrequencyInternal(uint8_t pin, uint32_t fbits) {
|
|
}
|
|
|
|
#define NUM_ADC_INPUTS NUM_ANALOG_INPUTS
|
|
|
|
uint16_t ADCee::usedpins = 0;
|
|
int * ADCee::analogvals = NULL;
|
|
|
|
int ADCee::init(uint8_t pin) {
|
|
uint8_t id = pin - A0;
|
|
int value = 0;
|
|
|
|
if (id > NUM_ADC_INPUTS)
|
|
return -1023;
|
|
|
|
// Permanently configure SAMD IO MUX for that pin
|
|
pinPeripheral(pin, PIO_ANALOG);
|
|
ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[pin].ulADCChannelNumber; // Selection for the positive ADC input
|
|
|
|
// Start conversion
|
|
ADC->SWTRIG.bit.START = 1;
|
|
|
|
// Wait for the conversion to be ready
|
|
while (ADC->INTFLAG.bit.RESRDY == 0); // Waiting for conversion to complete
|
|
|
|
// Read the value
|
|
value = ADC->RESULT.reg;
|
|
|
|
if (analogvals == NULL)
|
|
analogvals = (int *)calloc(NUM_ADC_INPUTS+1, sizeof(int));
|
|
analogvals[id] = value;
|
|
usedpins |= (1<<id);
|
|
|
|
return value;
|
|
}
|
|
|
|
int16_t ADCee::ADCmax() {
|
|
return 4095;
|
|
}
|
|
|
|
/*
|
|
* Read function ADCee::read(pin) to get value instead of analogRead(pin)
|
|
*/
|
|
int ADCee::read(uint8_t pin, bool fromISR) {
|
|
uint8_t id = pin - A0;
|
|
if ((usedpins & (1<<id) ) == 0)
|
|
return -1023;
|
|
// we do not need to check (analogvals == NULL)
|
|
// because usedpins would still be 0 in that case
|
|
return analogvals[id];
|
|
}
|
|
/*
|
|
* Scan function that is called from interrupt
|
|
*/
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("-O3")
|
|
void ADCee::scan() {
|
|
static uint8_t id = 0; // id and mask are the same thing but it is faster to
|
|
static uint16_t mask = 1; // increment and shift instead to calculate mask from id
|
|
static bool waiting = false;
|
|
|
|
if (waiting) {
|
|
// look if we have a result
|
|
if (ADC->INTFLAG.bit.RESRDY == 0)
|
|
return; // no result, continue to wait
|
|
// found value
|
|
analogvals[id] = ADC->RESULT.reg;
|
|
// advance at least one track
|
|
// for scope debug TrackManager::track[1]->setBrake(0);
|
|
waiting = false;
|
|
id++;
|
|
mask = mask << 1;
|
|
if (id == NUM_ADC_INPUTS+1) {
|
|
id = 0;
|
|
mask = 1;
|
|
}
|
|
}
|
|
if (!waiting) {
|
|
if (usedpins == 0) // otherwise we would loop forever
|
|
return;
|
|
// look for a valid track to sample or until we are around
|
|
while (true) {
|
|
if (mask & usedpins) {
|
|
// start new ADC aquire on id
|
|
ADC->INPUTCTRL.bit.MUXPOS = g_APinDescription[id + A0].ulADCChannelNumber; // Selection for the positive ADC input
|
|
// Start conversion
|
|
ADC->SWTRIG.bit.START = 1;
|
|
// for scope debug TrackManager::track[1]->setBrake(1);
|
|
waiting = true;
|
|
return;
|
|
}
|
|
id++;
|
|
mask = mask << 1;
|
|
if (id == NUM_ADC_INPUTS+1) {
|
|
id = 0;
|
|
mask = 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#pragma GCC pop_options
|
|
|
|
void ADCee::begin() {
|
|
noInterrupts();
|
|
// Set up ADC to do faster reads... default for Arduino Zero platform configs is 436uS,
|
|
// and we need sub-58uS. This code sets it to a read speed of around 5-6uS, and enables
|
|
// 12-bit mode
|
|
// Reconfigure ADC
|
|
ADC->CTRLA.bit.ENABLE = 0; // disable ADC
|
|
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization
|
|
|
|
ADC->CTRLB.reg &= 0b1111100011001111; // mask PRESCALER and RESSEL bits
|
|
ADC->CTRLB.reg |= ADC_CTRLB_PRESCALER_DIV64 | // divide Clock by 16
|
|
ADC_CTRLB_RESSEL_12BIT; // Result 12 bits, 10 bits possible
|
|
ADC->AVGCTRL.reg = ADC_AVGCTRL_SAMPLENUM_1 | // take 1 sample at a time
|
|
ADC_AVGCTRL_ADJRES(0x00ul); // adjusting result by 0
|
|
ADC->SAMPCTRL.reg = 0x00ul; // sampling Time Length = 0
|
|
ADC->CTRLA.bit.ENABLE = 1; // enable ADC
|
|
while( ADC->STATUS.bit.SYNCBUSY == 1 ); // wait for synchronization
|
|
interrupts();
|
|
}
|
|
#endif
|