mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-24 00:26:13 +01:00
6c98f90151
Reduce the time spent with interrupts disabled in I2CManager response code by enabling interrupts after the state machine has finished. Also, some comment changes.
224 lines
8.3 KiB
C
224 lines
8.3 KiB
C
/*
|
|
* © 2021, Neil McKechnie. All rights reserved.
|
|
*
|
|
* This file is part of CommandStation-EX
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef I2CMANAGER_NONBLOCKING_H
|
|
#define I2CMANAGER_NONBLOCKING_H
|
|
|
|
#include <Arduino.h>
|
|
#include "I2CManager.h"
|
|
#if defined(I2C_USE_INTERRUPTS)
|
|
#include <util/atomic.h>
|
|
#else
|
|
#define ATOMIC_BLOCK(x)
|
|
#define ATOMIC_RESTORESTATE
|
|
#endif
|
|
|
|
// This module is only compiled if I2C_USE_WIRE is not defined, so undefine it here
|
|
// to get intellisense to work correctly.
|
|
#if defined(I2C_USE_WIRE)
|
|
#undef I2C_USE_WIRE
|
|
#endif
|
|
|
|
/***************************************************************************
|
|
* Initialise the I2CManagerAsync class.
|
|
***************************************************************************/
|
|
void I2CManagerClass::_initialise()
|
|
{
|
|
queueHead = queueTail = NULL;
|
|
state = I2C_STATE_FREE;
|
|
I2C_init();
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Set I2C clock speed. Normally 100000 (Standard) or 400000 (Fast)
|
|
* on Arduino. Mega4809 supports 1000000 (Fast+) too.
|
|
***************************************************************************/
|
|
void I2CManagerClass::_setClock(unsigned long i2cClockSpeed) {
|
|
I2C_setClock(i2cClockSpeed);
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Helper function to start operations, if the I2C interface is free and
|
|
* there is a queued request to be processed.
|
|
***************************************************************************/
|
|
void I2CManagerClass::startTransaction() {
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
if ((state == I2C_STATE_FREE) && (queueHead != NULL)) {
|
|
state = I2C_STATE_ACTIVE;
|
|
currentRequest = queueHead;
|
|
rxCount = txCount = 0;
|
|
// Copy key fields to static data for speed.
|
|
operation = currentRequest->operation;
|
|
// Start the I2C process going.
|
|
I2C_sendStart();
|
|
startTime = micros();
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Function to queue a request block and initiate operations.
|
|
***************************************************************************/
|
|
void I2CManagerClass::queueRequest(I2CRB *req) {
|
|
req->status = I2C_STATUS_PENDING;
|
|
req->nextRequest = NULL;
|
|
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
if (!queueTail)
|
|
queueHead = queueTail = req; // Only item on queue
|
|
else
|
|
queueTail = queueTail->nextRequest = req; // Add to end
|
|
startTransaction();
|
|
}
|
|
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Initiate a write to an I2C device (non-blocking operation)
|
|
***************************************************************************/
|
|
uint8_t I2CManagerClass::write(uint8_t i2cAddress, const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req) {
|
|
// Make sure previous request has completed.
|
|
req->wait();
|
|
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
|
|
queueRequest(req);
|
|
return I2C_STATUS_OK;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Initiate a write from PROGMEM (flash) to an I2C device (non-blocking operation)
|
|
***************************************************************************/
|
|
uint8_t I2CManagerClass::write_P(uint8_t i2cAddress, const uint8_t * writeBuffer, uint8_t writeLen, I2CRB *req) {
|
|
// Make sure previous request has completed.
|
|
req->wait();
|
|
req->setWriteParams(i2cAddress, writeBuffer, writeLen);
|
|
req->operation = OPERATION_SEND_P;
|
|
queueRequest(req);
|
|
return I2C_STATUS_OK;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Initiate a read from the I2C device, optionally preceded by a write
|
|
* (non-blocking operation)
|
|
***************************************************************************/
|
|
uint8_t I2CManagerClass::read(uint8_t i2cAddress, uint8_t *readBuffer, uint8_t readLen,
|
|
const uint8_t *writeBuffer, uint8_t writeLen, I2CRB *req)
|
|
{
|
|
// Make sure previous request has completed.
|
|
req->wait();
|
|
req->setRequestParams(i2cAddress, readBuffer, readLen, writeBuffer, writeLen);
|
|
queueRequest(req);
|
|
return I2C_STATUS_OK;
|
|
}
|
|
|
|
/***************************************************************************
|
|
* checkForTimeout() function, called from isBusy() and wait() to cancel
|
|
* requests that are taking too long to complete.
|
|
* This function doesn't fully work as intended so is not currently called.
|
|
* Instead we check for an I2C hang-up and report an error from
|
|
* I2CRB::wait(), but we aren't able to recover from the hang-up. Such faults
|
|
* may be caused by an I2C wire short for example.
|
|
***************************************************************************/
|
|
void I2CManagerClass::checkForTimeout() {
|
|
unsigned long currentMicros = micros();
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
I2CRB *t = queueHead;
|
|
if (state==I2C_STATE_ACTIVE && t!=0 && t==currentRequest && timeout > 0) {
|
|
// Check for timeout
|
|
if (currentMicros - startTime > timeout) {
|
|
// Excessive time. Dequeue request
|
|
queueHead = t->nextRequest;
|
|
if (!queueHead) queueTail = NULL;
|
|
currentRequest = NULL;
|
|
// Post request as timed out.
|
|
t->status = I2C_STATUS_TIMEOUT;
|
|
// Reset TWI interface so it is able to continue
|
|
// Try close and init, not entirely satisfactory but sort of works...
|
|
I2C_close(); // Shutdown and restart twi interface
|
|
I2C_init();
|
|
state = I2C_STATE_FREE;
|
|
|
|
// Initiate next queued request if any.
|
|
startTransaction();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Loop function, for general background work
|
|
***************************************************************************/
|
|
void I2CManagerClass::loop() {
|
|
#if !defined(I2C_USE_INTERRUPTS)
|
|
handleInterrupt();
|
|
#endif
|
|
// Timeout is now reported in I2CRB::wait(), not here.
|
|
// I've left the code, commented out, as a reminder to look at this again
|
|
// in the future.
|
|
//checkForTimeout();
|
|
}
|
|
|
|
/***************************************************************************
|
|
* Interupt handler. Call I2C state machine, and dequeue request
|
|
* if completed.
|
|
***************************************************************************/
|
|
void I2CManagerClass::handleInterrupt() {
|
|
|
|
// Update hardware state machine
|
|
I2C_handleInterrupt();
|
|
|
|
// Enable interrupts to minimise effect on other interrupt code
|
|
interrupts();
|
|
|
|
// Check if current request has completed. If there's a current request
|
|
// and state isn't active then state contains the completion status of the request.
|
|
if (state != I2C_STATE_ACTIVE && currentRequest != NULL) {
|
|
// Remove completed request from head of queue
|
|
ATOMIC_BLOCK(ATOMIC_RESTORESTATE) {
|
|
I2CRB * t = queueHead;
|
|
if (t == queueHead) {
|
|
queueHead = t->nextRequest;
|
|
if (!queueHead) queueTail = queueHead;
|
|
t->nBytes = rxCount;
|
|
t->status = state;
|
|
|
|
// I2C state machine is now free for next request
|
|
currentRequest = NULL;
|
|
state = I2C_STATE_FREE;
|
|
|
|
// Start next request (if any)
|
|
I2CManager.startTransaction();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fields in I2CManager class specific to Non-blocking implementation.
|
|
I2CRB * volatile I2CManagerClass::queueHead = NULL;
|
|
I2CRB * volatile I2CManagerClass::queueTail = NULL;
|
|
I2CRB * volatile I2CManagerClass::currentRequest = NULL;
|
|
volatile uint8_t I2CManagerClass::state = I2C_STATE_FREE;
|
|
volatile uint8_t I2CManagerClass::txCount;
|
|
volatile uint8_t I2CManagerClass::rxCount;
|
|
volatile uint8_t I2CManagerClass::operation;
|
|
volatile uint8_t I2CManagerClass::bytesToSend;
|
|
volatile uint8_t I2CManagerClass::bytesToReceive;
|
|
volatile unsigned long I2CManagerClass::startTime;
|
|
unsigned long I2CManagerClass::timeout = 0;
|
|
|
|
#endif |