mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-01-23 02:58:52 +01:00
397 lines
13 KiB
C++
397 lines
13 KiB
C++
/*
|
|
* © 2022 Paul M Antoine
|
|
* © 2021 Mike S
|
|
* © 2021 Fred Decker
|
|
* © 2020-2022 Harald Barth
|
|
* © 2020-2021 Chris Harlow
|
|
* All rights reserved.
|
|
*
|
|
* This file is part of CommandStation-EX
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <Arduino.h>
|
|
#include "MotorDriver.h"
|
|
#include "DCCWaveform.h"
|
|
#include "DCCTimer.h"
|
|
#include "DIAG.h"
|
|
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
#include "ESP32-fixes.h"
|
|
#endif
|
|
|
|
bool MotorDriver::commonFaultPin=false;
|
|
|
|
volatile portreg_t shadowPORTA;
|
|
volatile portreg_t shadowPORTB;
|
|
volatile portreg_t shadowPORTC;
|
|
|
|
MotorDriver::MotorDriver(int16_t power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
|
|
byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin) {
|
|
powerPin=power_pin;
|
|
invertPower=power_pin < 0;
|
|
if (invertPower) {
|
|
powerPin = 0-power_pin;
|
|
IODevice::write(powerPin,HIGH);// set to OUTPUT and off
|
|
} else {
|
|
powerPin = power_pin;
|
|
IODevice::write(powerPin,LOW);// set to OUTPUT and off
|
|
}
|
|
|
|
signalPin=signal_pin;
|
|
getFastPin(F("SIG"),signalPin,fastSignalPin);
|
|
pinMode(signalPin, OUTPUT);
|
|
|
|
fastSignalPin.shadowinout = NULL;
|
|
if (HAVE_PORTA(fastSignalPin.inout == &PORTA)) {
|
|
DIAG(F("Found PORTA pin %d"),signalPin);
|
|
fastSignalPin.shadowinout = fastSignalPin.inout;
|
|
fastSignalPin.inout = &shadowPORTA;
|
|
}
|
|
if (HAVE_PORTB(fastSignalPin.inout == &PORTB)) {
|
|
DIAG(F("Found PORTB pin %d"),signalPin);
|
|
fastSignalPin.shadowinout = fastSignalPin.inout;
|
|
fastSignalPin.inout = &shadowPORTB;
|
|
}
|
|
if (HAVE_PORTC(fastSignalPin.inout == &PORTC)) {
|
|
DIAG(F("Found PORTC pin %d"),signalPin);
|
|
fastSignalPin.shadowinout = fastSignalPin.inout;
|
|
fastSignalPin.inout = &shadowPORTC;
|
|
}
|
|
|
|
signalPin2=signal_pin2;
|
|
if (signalPin2!=UNUSED_PIN) {
|
|
dualSignal=true;
|
|
getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
|
|
pinMode(signalPin2, OUTPUT);
|
|
}
|
|
else dualSignal=false;
|
|
|
|
brakePin=brake_pin;
|
|
if (brake_pin!=UNUSED_PIN){
|
|
invertBrake=brake_pin < 0;
|
|
brakePin=invertBrake ? 0-brake_pin : brake_pin;
|
|
getFastPin(F("BRAKE"),brakePin,fastBrakePin);
|
|
// if brake is used for railcom cutout we need to do PORTX register trick here as well
|
|
pinMode(brakePin, OUTPUT);
|
|
setBrake(true); // start with brake on in case we hace DC stuff going on
|
|
}
|
|
else brakePin=UNUSED_PIN;
|
|
|
|
currentPin=current_pin;
|
|
if (currentPin!=UNUSED_PIN) {
|
|
senseOffset = ADCee::init(currentPin);
|
|
}
|
|
|
|
faultPin=fault_pin;
|
|
if (faultPin != UNUSED_PIN) {
|
|
getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin);
|
|
pinMode(faultPin, INPUT);
|
|
}
|
|
|
|
// This conversion performed at compile time so the remainder of the code never needs
|
|
// float calculations or libraray code.
|
|
senseFactorInternal=sense_factor * senseScale;
|
|
tripMilliamps=trip_milliamps;
|
|
rawCurrentTripValue=mA2raw(trip_milliamps);
|
|
|
|
if (rawCurrentTripValue + senseOffset > ADCee::ADCmax()) {
|
|
// This would mean that the values obtained from the ADC never
|
|
// can reach the trip value. So independent of the current, the
|
|
// short circuit protection would never trip. So we adjust the
|
|
// trip value so that it is tiggered when the ADC reports it's
|
|
// maximum value instead.
|
|
|
|
// DIAG(F("Changing short detection value from %d to %d mA"),
|
|
// raw2mA(rawCurrentTripValue), raw2mA(ADCee::ADCmax()-senseOffset));
|
|
rawCurrentTripValue=ADCee::ADCmax()-senseOffset;
|
|
}
|
|
|
|
if (currentPin==UNUSED_PIN)
|
|
DIAG(F("** WARNING ** No current or short detection"));
|
|
else {
|
|
DIAG(F("CurrentPin=A%d, Offset=%d, TripValue=%d"),
|
|
currentPin-A0, senseOffset,rawCurrentTripValue);
|
|
|
|
// self testing diagnostic for the non-float converters... may be removed when happy
|
|
// DIAG(F("senseFactorInternal=%d raw2mA(1000)=%d mA2Raw(1000)=%d"),
|
|
// senseFactorInternal, raw2mA(1000),mA2raw(1000));
|
|
}
|
|
|
|
// prepare values for current detection
|
|
sampleDelay = 0;
|
|
lastSampleTaken = millis();
|
|
progTripValue = mA2raw(TRIP_CURRENT_PROG);
|
|
|
|
}
|
|
|
|
bool MotorDriver::isPWMCapable() {
|
|
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
|
|
}
|
|
|
|
|
|
void MotorDriver::setPower(POWERMODE mode) {
|
|
bool on=mode==POWERMODE::ON;
|
|
if (on) {
|
|
noInterrupts();
|
|
IODevice::write(powerPin,invertPower ? LOW : HIGH);
|
|
interrupts();
|
|
if (isProgTrack)
|
|
DCCWaveform::progTrack.clearResets();
|
|
}
|
|
else {
|
|
noInterrupts();
|
|
IODevice::write(powerPin,invertPower ? HIGH : LOW);
|
|
interrupts();
|
|
}
|
|
powerMode=mode;
|
|
}
|
|
|
|
// setBrake applies brake if on == true. So to get
|
|
// voltage from the motor bride one needs to do a
|
|
// setBrake(false).
|
|
// If the brakePin is negative that means the sense
|
|
// of the brake pin on the motor bridge is inverted
|
|
// (HIGH == release brake) and setBrake does
|
|
// compensate for that.
|
|
//
|
|
void MotorDriver::setBrake(bool on, bool interruptContext) {
|
|
if (brakePin == UNUSED_PIN) return;
|
|
if (!interruptContext) {noInterrupts();}
|
|
if (on ^ invertBrake)
|
|
setHIGH(fastBrakePin);
|
|
else
|
|
setLOW(fastBrakePin);
|
|
if (!interruptContext) {interrupts();}
|
|
}
|
|
|
|
bool MotorDriver::canMeasureCurrent() {
|
|
return currentPin!=UNUSED_PIN;
|
|
}
|
|
/*
|
|
* Return the current reading as pin reading 0 to 1023. If the fault
|
|
* pin is activated return a negative current to show active fault pin.
|
|
* As there is no -0, cheat a little and return -1 in that case.
|
|
*
|
|
* senseOffset handles the case where a shield returns values above or below
|
|
* a central value depending on direction.
|
|
*
|
|
* Bool fromISR should be adjusted dependent how function is called
|
|
*/
|
|
int MotorDriver::getCurrentRaw(bool fromISR) {
|
|
(void)fromISR;
|
|
if (currentPin==UNUSED_PIN) return 0;
|
|
int current;
|
|
current = ADCee::read(currentPin, fromISR)-senseOffset;
|
|
if (current<0) current=0-current;
|
|
if ((faultPin != UNUSED_PIN) && isLOW(fastFaultPin) && powerMode==POWERMODE::ON)
|
|
return (current == 0 ? -1 : -current);
|
|
return current;
|
|
|
|
}
|
|
|
|
#ifdef ANALOG_READ_INTERRUPT
|
|
/*
|
|
* This should only be called in interrupt context
|
|
* Copies current value from HW to cached value in
|
|
* Motordriver.
|
|
*/
|
|
#pragma GCC push_options
|
|
#pragma GCC optimize ("-O3")
|
|
bool MotorDriver::sampleCurrentFromHW() {
|
|
byte low, high;
|
|
//if (!bit_is_set(ADCSRA, ADIF))
|
|
if (bit_is_set(ADCSRA, ADSC))
|
|
return false;
|
|
// if ((ADMUX & mask) != (currentPin - A0))
|
|
// return false;
|
|
low = ADCL; //must read low before high
|
|
high = ADCH;
|
|
bitSet(ADCSRA, ADIF);
|
|
sampleCurrent = (high << 8) | low;
|
|
sampleCurrentTimestamp = millis();
|
|
return true;
|
|
}
|
|
void MotorDriver::startCurrentFromHW() {
|
|
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
|
const byte mask = 7;
|
|
#else
|
|
const byte mask = 31;
|
|
#endif
|
|
ADMUX=(1<<REFS0)|((currentPin-A0) & mask); //select AVCC as reference and set MUX
|
|
bitSet(ADCSRA,ADSC); // start conversion
|
|
}
|
|
#pragma GCC pop_options
|
|
#endif //ANALOG_READ_INTERRUPT
|
|
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
uint16_t taurustones[28] = { 165, 175, 196, 220,
|
|
247, 262, 294, 330,
|
|
249, 392, 440, 494,
|
|
523, 587, 659, 698,
|
|
494, 440, 392, 249,
|
|
330, 284, 262, 247,
|
|
220, 196, 175, 165 };
|
|
#endif
|
|
void MotorDriver::setDCSignal(byte speedcode) {
|
|
if (brakePin == UNUSED_PIN)
|
|
return;
|
|
#if defined(ARDUINO_AVR_UNO)
|
|
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
|
|
#endif
|
|
#if defined(ARDUINO_AVR_MEGA) || defined(ARDUINO_AVR_MEGA2560)
|
|
TCCR2B = (TCCR2B & B11111000) | B00000110; // set divisor on timer 2 to result in (approx) 122.55Hz
|
|
TCCR4B = (TCCR4B & B11111000) | B00000100; // same for timer 4 but maxcount and thus divisor differs
|
|
#endif
|
|
// spedcoode is a dcc speed & direction
|
|
byte tSpeed=speedcode & 0x7F; // DCC Speed with 0,1 stop and speed steps 2 to 127
|
|
byte tDir=speedcode & 0x80;
|
|
byte brake;
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
{
|
|
int f = 131;
|
|
if (tSpeed > 2) {
|
|
if (tSpeed <= 58) {
|
|
f = taurustones[ (tSpeed-2)/2 ] ;
|
|
}
|
|
}
|
|
DCCEXanalogWriteFrequency(brakePin, f); // set DC PWM frequency to 100Hz XXX May move to setup
|
|
}
|
|
#endif
|
|
if (tSpeed <= 1) brake = 255;
|
|
else if (tSpeed >= 127) brake = 0;
|
|
else brake = 2 * (128-tSpeed);
|
|
if (invertBrake)
|
|
brake=255-brake;
|
|
#if defined(ARDUINO_ARCH_ESP32)
|
|
DCCEXanalogWrite(brakePin,brake);
|
|
#else
|
|
analogWrite(brakePin,brake);
|
|
#endif
|
|
//DIAG(F("DCSignal %d"), speedcode);
|
|
if (HAVE_PORTA(fastSignalPin.shadowinout == &PORTA)) {
|
|
noInterrupts();
|
|
HAVE_PORTA(shadowPORTA=PORTA);
|
|
setSignal(tDir);
|
|
HAVE_PORTA(PORTA=shadowPORTA);
|
|
interrupts();
|
|
} else if (HAVE_PORTB(fastSignalPin.shadowinout == &PORTB)) {
|
|
noInterrupts();
|
|
HAVE_PORTB(shadowPORTB=PORTB);
|
|
setSignal(tDir);
|
|
HAVE_PORTB(PORTB=shadowPORTB);
|
|
interrupts();
|
|
} else if (HAVE_PORTC(fastSignalPin.shadowinout == &PORTC)) {
|
|
noInterrupts();
|
|
HAVE_PORTC(shadowPORTC=PORTC);
|
|
setSignal(tDir);
|
|
HAVE_PORTC(PORTC=shadowPORTC);
|
|
interrupts();
|
|
} else {
|
|
noInterrupts();
|
|
setSignal(tDir);
|
|
interrupts();
|
|
}
|
|
}
|
|
|
|
unsigned int MotorDriver::raw2mA( int raw) {
|
|
//DIAG(F("%d = %d * %d / %d"), (int32_t)raw * senseFactorInternal / senseScale, raw, senseFactorInternal, senseScale);
|
|
return (int32_t)raw * senseFactorInternal / senseScale;
|
|
}
|
|
unsigned int MotorDriver::mA2raw( unsigned int mA) {
|
|
//DIAG(F("%d = %d * %d / %d"), (int32_t)mA * senseScale / senseFactorInternal, mA, senseScale, senseFactorInternal);
|
|
return (int32_t)mA * senseScale / senseFactorInternal;
|
|
}
|
|
|
|
void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) {
|
|
// DIAG(F("MotorDriver %S Pin=%d,"),type,pin);
|
|
(void) type; // avoid compiler warning if diag not used above.
|
|
#if defined(ARDUINO_ARCH_SAMD)
|
|
PortGroup *port = digitalPinToPort(pin);
|
|
#elif defined(ARDUINO_ARCH_STM32)
|
|
GPIO_TypeDef *port = digitalPinToPort(pin);
|
|
#else
|
|
uint8_t port = digitalPinToPort(pin);
|
|
#endif
|
|
if (input)
|
|
result.inout = portInputRegister(port);
|
|
else
|
|
result.inout = portOutputRegister(port);
|
|
result.maskHIGH = digitalPinToBitMask(pin);
|
|
result.maskLOW = ~result.maskHIGH;
|
|
// DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH);
|
|
}
|
|
|
|
void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
|
|
if (millis() - lastSampleTaken < sampleDelay) return;
|
|
lastSampleTaken = millis();
|
|
int tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
|
|
|
|
// Trackname for diag messages later
|
|
switch (powerMode) {
|
|
case POWERMODE::OFF:
|
|
sampleDelay = POWER_SAMPLE_OFF_WAIT;
|
|
break;
|
|
case POWERMODE::ON:
|
|
// Check current
|
|
lastCurrent=getCurrentRaw();
|
|
if (lastCurrent < 0) {
|
|
// We have a fault pin condition to take care of
|
|
lastCurrent = -lastCurrent;
|
|
setPower(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
|
|
if (commonFaultPin) {
|
|
if (lastCurrent < tripValue) {
|
|
setPower(POWERMODE::ON); // maybe other track
|
|
}
|
|
// Write this after the fact as we want to turn on as fast as possible
|
|
// because we don't know which output actually triggered the fault pin
|
|
DIAG(F("COMMON FAULT PIN ACTIVE: POWERTOGGLE TRACK %c"), trackno + 'A');
|
|
} else {
|
|
DIAG(F("TRACK %c FAULT PIN ACTIVE - OVERLOAD"), trackno + 'A');
|
|
if (lastCurrent < tripValue) {
|
|
lastCurrent = tripValue; // exaggerate
|
|
}
|
|
}
|
|
}
|
|
if (lastCurrent < tripValue) {
|
|
sampleDelay = POWER_SAMPLE_ON_WAIT;
|
|
if(power_good_counter<100)
|
|
power_good_counter++;
|
|
else
|
|
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
|
|
} else {
|
|
setPower(POWERMODE::OVERLOAD);
|
|
unsigned int mA=raw2mA(lastCurrent);
|
|
unsigned int maxmA=raw2mA(tripValue);
|
|
power_good_counter=0;
|
|
sampleDelay = power_sample_overload_wait;
|
|
DIAG(F("TRACK %c POWER OVERLOAD %dmA (limit %dmA) shutdown for %dms"), trackno + 'A', mA, maxmA, sampleDelay);
|
|
if (power_sample_overload_wait >= 10000)
|
|
power_sample_overload_wait = 10000;
|
|
else
|
|
power_sample_overload_wait *= 2;
|
|
}
|
|
break;
|
|
case POWERMODE::OVERLOAD:
|
|
// Try setting it back on after the OVERLOAD_WAIT
|
|
setPower(POWERMODE::ON);
|
|
sampleDelay = POWER_SAMPLE_ON_WAIT;
|
|
// Debug code....
|
|
DIAG(F("TRACK %c POWER RESTORE (check %dms)"), trackno + 'A', sampleDelay);
|
|
break;
|
|
default:
|
|
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
|
|
}
|
|
}
|