1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-04-21 12:31:19 +02:00
CommandStation-EX/IO_RSproto.cpp
2024-12-23 08:43:12 -05:00

452 lines
13 KiB
C++

/*
* © 2024, Travis Farmer. All rights reserved.
* © 2021 Chris Harlow
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "IO_RSproto.h"
#include "defines.h"
static const byte PAYLOAD_FALSE = 0;
static const byte PAYLOAD_NORMAL = 1;
static const byte PAYLOAD_STRING = 2;
/************************************************************
* RSproto implementation
************************************************************/
// Constructor for RSproto
RSproto::RSproto(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin, int cycleTime) {
_serial = &serial;
_baud = baud;
_txPin = txPin;
_busNo = busNo;
_cycleTime = cycleTime * 1000UL;
bufferLength=0;
inCommandPayload=PAYLOAD_FALSE;
// Add device to HAL device chain
IODevice::addDevice(this);
// Add bus to RSproto chain.
_nextBus = _busList;
_busList = this;
}
/* -= _loop =-
//
// Main loop function for RSproto.
// Work through list of nodes. For each node, in separate loop entries
// When the slot time has finished, move on to the next device.
*/
// CRC-16 implementation (replace with your preferred CRC library if needed)
uint16_t RSproto::crc16(uint8_t *data, uint16_t length) {
uint16_t crc = 0xFFFF;
for (uint16_t i = 0; i < length; i++) {
crc ^= data[i];
for (int j = 0; j < 8; j++) {
bool bit = ((crc & 0x0001) != 0);
crc >>= 1;
if (bit) {
crc ^= 0xA001;
}
}
}
return crc;
}
void RSprotonode::_pollDigital(unsigned long currentMicros) {
}
void RSprotonode::_pollAnalog(unsigned long currentMicros) {
RSproto *bus = RSproto::findBus(0);
}
void RSproto::_loop(unsigned long currentMicros) {
_currentMicros = currentMicros;
//if (_busy == true) return;
if (_currentNode == NULL) _currentNode = _nodeListStart;
if (!hasTasks() && _currentNode->isInitialised()) {
_cycleStartTime = _currentMicros;
uint8_t buffA[3];
buffA[0] = (_currentNode->getNodeID());
buffA[1] = (0);
buffA[2] = (EXIORDD);
addTask(buffA, 3, EXIORDD);
uint8_t buffB[3];
buffB[0] = (_currentNode->getNodeID());
buffB[1] = (0);
buffB[2] = (EXIORDAN);
addTask(buffB, 3, EXIORDAN);
//DIAG(F("Polling node: %i"), _currentNode->getNodeID());
_currentNode = _currentNode->getNext();
}
//if (currentTask == nullptr) return;
if ( hasTasks() && _currentMicros - _cycleStartTimeA >= _cycleTime){
_cycleStartTimeA = _currentMicros;
Task* currentTask = getTaskById(getNextTaskId());
if (!currentTask->rxMode) { // Check if a task was found
currentTask->crcPassFail = 0;
uint16_t response_crc = crc16((uint8_t*)currentTask->commandArray, currentTask->byteCount-1);
if (_txPin != -1) digitalWrite(_txPin,HIGH);
// Send response data with CRC
_serial->write(0xFE);
_serial->write(0xFE);
_serial->write(response_crc >> 8);
_serial->write(response_crc & 0xFF);
_serial->write(currentTask->byteCount);
for (int i = 0; i < currentTask->byteCount; i++) {
_serial->write(currentTask->commandArray[i]);
}
_serial->write(0xFD);
_serial->write(0xFD);
_serial->flush();
if (_txPin != -1) digitalWrite(_txPin,LOW);
// delete task command after sending, for now
currentTask->rxMode = true;
//DIAG(F("Polling Task: %i"), currentTask->taskID);
markTaskCompleted(currentTask->taskID);
}
}
if ( _serial->available()) {
uint16_t calculated_crc;
int byteCount = 100;
int curByte = _serial->read();
if (curByte == 0xFE && flagStart == false) flagStart = true;
else if ( curByte == 0xFE && flagStart == true) {
flagProc = false;
byteCounter = 0;
flagStarted = true;
flagStart = false;
flagEnded = false;
rxStart = true;
rxEnd = false;
crcPass = false;
memset(received_data, 0, ARRAY_SIZE);
}else if (flagStarted) {
crc[0] = curByte;
byteCounter++;
flagStarted = false;
} else if (byteCounter == 1) {
crc[1] = curByte;
received_crc = (crc[0] << 8) | crc[1];
byteCounter++;
} else if (byteCounter == 2) {
byteCount = curByte;
byteCounter++;
} else if (flagEnded == false && byteCounter >= 3) {
received_data[byteCounter-3] = curByte;
byteCounter++;
}
if (curByte == 0xFD && flagEnd == false) flagEnd = true;
else if ( curByte == 0xFD && flagEnd == true) {
flagEnded = true;
flagEnd = false;
rxEnd = true;
byteCount = byteCounter;
byteCounter = 0;
}
if (flagEnded) {
calculated_crc = crc16((uint8_t*)received_data, byteCount-6);
if (received_crc == calculated_crc) {
//DIAG(F("Loop CRC PASS"));
crcPass = true;
}else {
//DIAG(F("Loop CRC Fail %x %x"),received_crc,calculated_crc);
}
flagEnded = false;
}
// Check CRC validity
if (crcPass) {
// Data received successfully, process it (e.g., print)
int nodeTo = received_data[0];
if (nodeTo == 0) { // for master. master does not retransmit, or a loop will runaway.
flagProc = true;
}
} else {
//DIAG(F("IO_RSproto: CRC Error!"));
}
if (flagProc) {
int nodeTo = received_data[0];
int nodeFr = received_data[1];
RSprotonode *node = findNode(nodeFr);
//DIAG(F("Node from %i %i"), nodeFr, node->getNodeID());
int AddrCode = received_data[2];
//DIAG(F("From: %i, To: %i | %i %i %i %i %i"), nodeFr,nodeTo, received_data[3], received_data[4], received_data[5], received_data[6],received_data[7]);
//return;
switch (AddrCode) {
case EXIOPINS:
{node->setnumDigitalPins(received_data[3]);
node->setnumAnalogPins(received_data[4]);
// See if we already have suitable buffers assigned
if (node->getnumDigialPins()>0) {
size_t digitalBytesNeeded = (node->getnumDigialPins() + 7) / 8;
if (node->getdigitalPinBytes() < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (node->cleandigitalPinStates(digitalBytesNeeded)) {
node->setdigitalPinBytes(digitalBytesNeeded);
} else {
DIAG(F("EX-IOExpander485 node:%d ERROR alloc %d bytes"), nodeFr, digitalBytesNeeded);
//_deviceState = DEVSTATE_FAILED;
node->setdigitalPinBytes(0);
}
}
}
if (node->getnumAnalogPins()>0) {
size_t analogueBytesNeeded = node->getnumAnalogPins() * 2;
if (node->getanalogPinBytes() < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (node->cleanAnalogStates(analogueBytesNeeded)) {
node->setanalogPinBytes(analogueBytesNeeded);
} else {
DIAG(F("EX-IOExpander485 node:%d ERROR alloc analog pin bytes"), nodeFr);
//_deviceState = DEVSTATE_FAILED;
node->setanalogPinBytes(0);
}
}
}
break;}
case EXIOINITA: {
for (int i = 0; i < node->getnumAnalogPins(); i++) {
node->setanalogPinMap(received_data[i+3], i);
}
break;
}
case EXIOVER: {
node->setMajVer(received_data[3]);
node->setMinVer(received_data[4]);
node->setPatVer(received_data[5]);
DIAG(F("EX-IOExpander485: Found node %i v%i.%i.%i"),node->getNodeID(), node->getMajVer(), node->getMinVer(), node->getPatVer());
node->setInitialised();
//DIAG(F("EX-IOExpander485: Initialized Node:%d "), node->getNodeID());
break;
}
case EXIORDY: {
break;
}
case EXIOERR: {
DIAG(F("EX-IOExplorer485: Some sort of error was received... WHAT DID YOU DO!")); // ;-)
break;
}
case EXIORDAN: {
for (int i = 0; i < node->_numAnaloguePins; i++) {
node->setanalogInputBuffer(received_data[i+3], i);
}
break;
}
case EXIORDD: {
for (int i = 0; i < (node->_numDigitalPins+7)/8; i++) {
node->setdigitalInputStates(received_data[i+3], i);
}
break;
}
}
}
flagProc = false;
}
// temp debug
}
// Link to chain of RSproto instances, left over from RSproto template.
RSproto *RSproto::_busList = NULL;
/************************************************************
* RSprotonode implementation
************************************************************/
/* -= RSprotonode =-
//
// Constructor for RSprotonode object
*/
RSprotonode::RSprotonode(VPIN firstVpin, int nPins, uint8_t nodeID) {
_firstVpin = firstVpin;
_nPins = nPins;
_busNo = 0;
_nodeID = nodeID;
_initialised = false;
memset(resFlag, 0, 255);
//bus = bus->findBus(0);
//_serial = bus->_serialD;
if (_nodeID > 252) _nodeID = 252; // cannot have a node with the frame flags
if (_nodeID < 1) _nodeID = 1; // cannot have a node with the master ID
// Add this device to HAL device list
IODevice::addDevice(this);
_display();
// Add RSprotonode to RSproto object.
RSproto *bus = RSproto::findBus(_busNo);
if (bus != NULL) {
bus->addNode(this);
return;
}
}
bool RSprotonode::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
if (paramCount != 1) return false;
int pin = vpin - _firstVpin;
uint8_t pullup = (uint8_t)params[0];
uint8_t buff[ARRAY_SIZE];
buff[0] = (_nodeID);
buff[1] = (0);
buff[2] = (EXIODPUP);
buff[3] = (pin);
buff[4] = (pullup);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->setBusy();
bus->addTask(buff, 5, EXIODPUP);
return true;
}
int RSprotonode::_configureAnalogIn(VPIN vpin) {
int pin = vpin - _firstVpin;
//RSproto *mainrs = RSproto::findBus(_busNo);
uint8_t buff[ARRAY_SIZE];
buff[0] = (_nodeID);
buff[1] = (0);
buff[2] = (EXIOENAN);
buff[3] = (pin);
buff[4] = highByte(_firstVpin);
buff[5] = lowByte(_firstVpin);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->setBusy();
bus->addTask(buff, 6, EXIOENAN);
return false;
}
void RSprotonode::_begin() {
uint8_t buff[ARRAY_SIZE];
buff[0] = (_nodeID);
buff[1] = (0);
buff[2] = (EXIOINIT);
buff[3] = (_nPins);
buff[4] = ((_firstVpin & 0xFF));
buff[5] = ((_firstVpin >> 8));
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->initTask();
bus->setBusy();
bus->addTask(buff, 6, EXIOINIT);
buff[0] = (_nodeID);
buff[1] = (0);
buff[2] = (EXIOINITA);
startMillis = millis();
bus->setBusy();
bus->addTask(buff, 3, EXIOINITA);
buff[0] = (_nodeID);
buff[1] = (0);
buff[2] = (EXIOVER);
startMillis = millis();
bus->setBusy();
bus->addTask(buff, 3, EXIOVER);
//setInitialised();
#ifdef DIAG_IO
_display();
#endif
}
int RSprotonode::_read(VPIN vpin) {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
uint8_t pinByte = pin / 8;
bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8);
return value;
}
void RSprotonode::_write(VPIN vpin, int value) {
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
uint8_t buff[ARRAY_SIZE];
buff[0] = (_nodeID);
buff[1] = (0);
buff[2] = (EXIOWRD);
buff[3] = (pin);
buff[4] = (value);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->setBusy();
bus->addTask(buff, 5, EXIOWRD);
}
int RSprotonode::_readAnalogue(VPIN vpin) {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
if (_analoguePinMap[aPin] == pin) {
uint8_t _pinLSBByte = aPin * 2;
uint8_t _pinMSBByte = _pinLSBByte + 1;
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
}
}
return -1; // pin not found in table
}
void RSprotonode::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
int pin = vpin - _firstVpin;
uint8_t buff[ARRAY_SIZE];
buff[0] = (_nodeID);
buff[1] = (0);
buff[2] = (EXIOWRAN);
buff[3] = (pin);
buff[4] = highByte(value);
buff[5] = lowByte(value);
buff[6] = (profile);
buff[7] = highByte(duration);
buff[8] = lowByte(duration);
unsigned long startMillis = millis();
RSproto *bus = RSproto::findBus(0);
bus->setBusy();
bus->addTask(buff, 9, EXIOWRAN);
}