1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-23 08:06:13 +01:00
CommandStation-EX/DCC.cpp
2020-06-18 19:36:37 +01:00

503 lines
16 KiB
C++

#include "DCC.h"
#include "DCCWaveform.h"
#include "DIAG.h"
#include "Hardware.h"
// This module is responsible for converting API calls into
// messages to be sent to the waveform generator.
// It has no visibility of the hardware, timers, interrupts
// nor of the waveform issues such as preambles, start bits checksums or cutouts.
//
// Nor should it have to deal with JMRI responsess other than the OK/FAIL
// or cv value returned. I will move that back to the JMRI interface later
//
// The interface to the waveform generator is narrowed down to merely:
// Scheduling a message on the prog or main track using a function
// Obtaining ACKs from the prog track using a function
// There are no volatiles here.
void DCC::begin() {
DCCWaveform::begin();
}
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {
byte speedCode = tSpeed + (tSpeed > 0) + tDirection * 128; // max speed is 126, but speed codes range from 2-127 (0=stop, 1=emergency stop)
setThrottle2(cab, speedCode);
// retain speed for loco reminders
updateLocoReminder(cab, speedCode );
}
void DCC::setThrottle2( uint16_t cab, byte speedCode) {
uint8_t b[4];
uint8_t nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = SET_SPEED; // 128-step speed control byte
b[nB++] = speedCode; // for encoding see setThrottle
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
void DCC::setFunction(int cab, byte byte1) {
uint8_t b[3];
uint8_t nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = (byte1 | 0x80) & 0xBF;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4); // Repeat the packet four times
}
void DCC::setFunction(int cab, byte byte1, byte byte2) {
byte b[4];
byte nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = (byte1 | 0xDE) & 0xDF; // for safety this guarantees that first byte will either be 0xDE (for F13-F20) or 0xDF (for F21-F28)
b[nB++] = byte2;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4); // Repeat the packet four times
}
void DCC::setAccessory(int address, byte number, bool activate) {
byte b[2];
b[0] = address % 64 + 128; // first byte is of the form 10AAAAAA, where AAAAAA represent 6 least signifcant bits of accessory address
b[1] = ((((address / 64) % 8) << 4) + (number % 4 << 1) + activate % 2) ^ 0xF8; // second byte is of the form 1AAACDDD, where C should be 1, and the least significant D represent activate/deactivate
DCCWaveform::mainTrack.schedulePacket(b, 2, 4); // Repeat the packet four times
}
void DCC::writeCVByteMain(int cab, int cv, byte bValue) {
byte b[5];
byte nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = bValue;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) {
byte b[5];
byte nB = 0;
bValue = bValue % 2;
bNum = bNum % 8;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = WRITE_BIT | (bValue ? BIT_ON : BIT_OFF) | bNum;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
const ackOp PROGMEM WRITE_BIT0_PROG[] = {
BASELINE,
W0,WACK,
V0, WACK, // validate bit is 0
ITC1, // if acked, callback(1)
FAIL // callback (-1)
};
const ackOp PROGMEM WRITE_BIT1_PROG[] = {
BASELINE,
W1,WACK,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
FAIL // callback (-1)
};
const ackOp PROGMEM READ_BIT_PROG[] = {
BASELINE,
V1, WACK, // validate bit is 1
ITC1, // if acked, callback(1)
V0, WACK, // validate bit is zero
ITC0, // if acked callback 0
FAIL // bit not readable
};
const ackOp PROGMEM WRITE_BYTE_PROG[] = {
BASELINE,
WB,WACK, // Write
VB,WACK, // validate byte
ITC1, // if ok callback (1)
FAIL // callback (-1)
};
const ackOp PROGMEM READ_CV_PROG[] = {
BASELINE,
STARTMERGE, //clear bit and byte values ready for merge pass
// each bit is validated against 0 and the result inverted in MERGE
// this is because there tend to be more zeros in cv values than ones.
// There is no need for one validation as entire byte is validated at the end
V0, WACK, MERGE, // read and merge bit 0
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB, // verify merged byte and return it if acked ok
FAIL }; // verification failed
const ackOp PROGMEM LOCO_ID_PROG[] = {
BASELINE,
SETCV,(ackOp)29,
SETBIT,(ackOp)5,
V0, WACK, ITSKIP, // Skip to SKIPTARGET if bit 5 of CV29 is zero
// Long locoid
SETCV, (ackOp)17, // CV 17 is part of locoid
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
STASHLOCOID, // keep stashed cv 17 for later
// Read 2nd part from CV 18
SETCV, (ackOp)18,
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, NAKFAIL, // verify merged byte and return -1 it if not acked ok
COMBINELOCOID, // Combile byte with stash to make long locoid and callback
// ITSKIP Skips to here if CV 29 bit 5 was zero. so read CV 1 and return that
SKIPTARGET,
SETCV, (ackOp)1,
STARTMERGE,
V0, WACK, MERGE, // read and merge bit 1 etc
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
V0, WACK, MERGE,
VB, WACK, ITCB, // verify merged byte and callback
FAIL
};
void DCC::writeCVByte(int cv, byte byteValue, ACK_CALLBACK callback) {
ackManagerSetup(cv, byteValue, WRITE_BYTE_PROG, callback);
}
void DCC::writeCVBit(int cv, byte bitNum, bool bitValue, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else ackManagerSetup(cv, bitNum, bitValue?WRITE_BIT1_PROG:WRITE_BIT0_PROG, callback);
}
void DCC::readCVBit(int cv, byte bitNum, ACK_CALLBACK callback) {
if (bitNum >= 8) callback(-1);
else ackManagerSetup(cv, bitNum,READ_BIT_PROG, callback);
}
void DCC::readCV(int cv, ACK_CALLBACK callback) {
ackManagerSetup(cv, 0,READ_CV_PROG, callback);
}
void DCC::getLocoId(ACK_CALLBACK callback) {
ackManagerSetup(0,0, LOCO_ID_PROG, callback);
}
void DCC::forgetLoco(int cab) { // removes any speed reminders for this loco
for (int i=0;i<MAX_LOCOS;i++) if (speedTable[i].loco=cab) speedTable[i].loco=0;
}
void DCC::forgetAllLocos() { // removes all speed reminders
for (int i=0;i<MAX_LOCOS;i++) speedTable[i].loco=0;
}
void DCC::loop() {
DCCWaveform::loop(); // power overload checks
ackManagerLoop();
// if the main track transmitter still has a pending packet, skip this loop.
if ( DCCWaveform::mainTrack.packetPending) return;
// each time around the Arduino loop, we resend a loco speed packet reminder
for (; nextLoco < MAX_LOCOS; nextLoco++) {
if (speedTable[nextLoco].loco > 0) {
setThrottle2(speedTable[nextLoco].loco, speedTable[nextLoco].speedCode);
nextLoco++;
return;
}
}
for (nextLoco = 0; nextLoco < MAX_LOCOS; nextLoco++) {
if (speedTable[nextLoco].loco > 0) {
setThrottle2(speedTable[nextLoco].loco, speedTable[nextLoco].speedCode);
nextLoco++;
return;
}
}
}
///// Private helper functions below here /////////////////////
byte DCC::cv1(byte opcode, int cv) {
cv--;
return (highByte(cv) & (byte)0x03) | opcode;
}
byte DCC::cv2(int cv) {
cv--;
return lowByte(cv);
}
void DCC::updateLocoReminder(int loco, byte speedCode) {
int reg;
if (loco==0) {
// broadcast message
for (reg = 0; reg < MAX_LOCOS; reg++) speedTable[reg].speedCode = speedCode;
return;
}
// determine speed reg for this loco
int firstEmpty = MAX_LOCOS;
for (reg = 0; reg < MAX_LOCOS; reg++) {
if (speedTable[reg].loco == loco) break;
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg;
}
if (reg == MAX_LOCOS) reg = firstEmpty;
if (reg >= MAX_LOCOS) {
DIAG(F("\nToo many locos\n"));
return;
}
speedTable[reg].loco = loco;
speedTable[reg].speedCode = speedCode;
}
DCC::LOCO DCC::speedTable[MAX_LOCOS];
int DCC::nextLoco = 0;
//ACK MANAGER
ackOp const * DCC::ackManagerProg;
byte DCC::ackManagerByte;
byte DCC::ackManagerStash;
int DCC::ackManagerCv;
byte DCC::ackManagerBitNum;
bool DCC::ackReceived;
int DCC::ackTriggerMilliamps;
unsigned long DCC::ackPulseStart;
ACK_CALLBACK DCC::ackManagerCallback;
void DCC::ackManagerSetup(int cv, byte byteValueOrBitnum, ackOp const program[], ACK_CALLBACK callback) {
ackManagerCv = cv;
ackManagerProg = program;
ackManagerByte = byteValueOrBitnum;
ackManagerBitNum=byteValueOrBitnum;
ackManagerCallback = callback;
}
const byte RESET_MIN=8; // tuning of reset counter before sending message
void DCC::ackManagerLoop() {
while (ackManagerProg) {
// breaks from this switch will step to next prog entry
// returns from this switch will stay on same entry (typically WACK waiting and when all finished.)
byte opcode=pgm_read_byte_near(ackManagerProg);
// DIAG(F("apAck %d\n"),opcode);
int resets=DCCWaveform::progTrack.sentResetsSincePacket;
int current;
switch (opcode) {
case BASELINE:
if (resets<RESET_MIN) return; // try later
ackTriggerMilliamps=Hardware::getCurrentMilliamps(false) + ACK_MIN_PULSE;
// DIAG(F("\nBASELINE trigger mA=%d\n"),ackTriggerMilliamps);
break;
case W0: // write 0 bit
case W1: // write 1 bit
{
if (resets<RESET_MIN) return; // try later
byte instruction = WRITE_BIT | (opcode==W1 ? BIT_ON : BIT_OFF) | ackManagerBitNum;
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction };
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), 6);
ackPulseStart=0;
}
break;
case WB: // write byte
{
if (resets<RESET_MIN) return; // try later
byte message[] = {cv1(WRITE_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), 6);
ackPulseStart=0;
}
break;
case VB: // Issue validate Byte packet
{
if (resets<RESET_MIN) return; // try later
// DIAG(F("\nVB %d %d"),ackManagerCv,ackManagerByte);
byte message[] = { cv1(VERIFY_BYTE, ackManagerCv), cv2(ackManagerCv), ackManagerByte};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), 5);
ackPulseStart=0;
}
break;
case V0:
case V1: // Issue validate bit=0 or bit=1 packet
{
if (resets<RESET_MIN) return; // try later
// DIAG(F("V%d cv=%d bit=%d"),opcode==V1, ackManagerCv,ackManagerBitNum);
byte instruction = VERIFY_BIT | (opcode==V0?BIT_OFF:BIT_ON) | ackManagerBitNum;
byte message[] = {cv1(BIT_MANIPULATE, ackManagerCv), cv2(ackManagerCv), instruction };
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), 5);
ackPulseStart=0;
}
break;
case WACK: // wait for ack (or absence of ack)
if (resets > 6) { //ACK timeout
// DIAG(F("\nWACK fail %d\n"), resets);
ackReceived = false;
break; // move on to next prog step
}
current=Hardware::getCurrentMilliamps(false);
// An ACK is a pulse lasting between 4.5 and 8.5 mSecs (refer @haba)
if (current>ackTriggerMilliamps) {
if (ackPulseStart==0)ackPulseStart=micros(); // leading edge of pulse detected
return;
}
// not in pulse
if (ackPulseStart==0) return; // keep waiting for leading edge
{ // detected trailing edge of pulse
long pulseDuration=micros()-ackPulseStart;
if (pulseDuration>4500 && pulseDuration<8000) {
ackReceived=true;
DCCWaveform::progTrack.killRemainingRepeats(); // probably no need after 8.5ms!!
break; // we have a genuine ACK result
}
}
ackPulseStart=0; // We have detected a too-short or too-long pulse so ignore and wait for next leading edge
return; // keep waiting
case ITC0:
case ITC1: // If True Callback(0 or 1) (if prevous WACK got an ACK)
if (ackReceived) {
ackManagerProg = NULL; // all done now
(ackManagerCallback)(opcode==ITC0?0:1);
return;
}
break;
case ITCB: // If True callback(byte)
if (ackReceived) {
ackManagerProg = NULL; // all done now
(ackManagerCallback)(ackManagerByte);
return;
}
break;
case NAKFAIL: // If nack callback(-1)
if (!ackReceived) {
ackManagerProg = NULL; // all done now
(ackManagerCallback)(-1);
return;
}
break;
case FAIL: // callback(-1)
ackManagerProg = NULL;
(ackManagerCallback)(-1);
return;
case STARTMERGE:
ackManagerBitNum=7;
ackManagerByte=0;
break;
case MERGE: // Merge previous Validate zero wack response with byte value and update bit number (use for reading CV bytes)
ackManagerByte <<= 1;
// ackReceived means bit is zero.
if (!ackReceived) ackManagerByte |= 1;
ackManagerBitNum--;
break;
case SETBIT:
ackManagerProg++;
ackManagerBitNum=pgm_read_byte_near(ackManagerProg);
break;
case SETCV:
ackManagerProg++;
ackManagerCv=pgm_read_byte_near(ackManagerProg);
break;
case STASHLOCOID:
ackManagerStash=ackManagerByte; // stash value from CV17
break;
case COMBINELOCOID:
// ackManagerStash is cv17, ackManagerByte is CV 18
ackManagerProg=NULL;
(ackManagerCallback)( ackManagerByte + ((ackManagerStash - 192) << 8));
return;
case ITSKIP:
if (!ackReceived) break;
// SKIP opcodes until SKIPTARGET found
while (opcode!=SKIPTARGET) {
ackManagerProg++;
opcode=pgm_read_byte_near(ackManagerProg);
}
// DIAG(F("\nSKIPTARGET located\n"));
break;
case SKIPTARGET:
break;
default:
// DIAG(F("!! ackOp %d FAULT!!"),opcode);
ackManagerProg=NULL;
(ackManagerCallback)( -1);
return;
} // end of switch
ackManagerProg++;
}
}