1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-04-21 12:31:19 +02:00
CommandStation-EX/IO_RSproto.cpp
2024-12-16 10:21:47 -05:00

415 lines
13 KiB
C++

/*
* © 2024, Travis Farmer. All rights reserved.
* © 2021 Chris Harlow
*
* This file is part of DCC++EX API
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "IO_RSproto.h"
#include "defines.h"
static const byte PAYLOAD_FALSE = 0;
static const byte PAYLOAD_NORMAL = 1;
static const byte PAYLOAD_STRING = 2;
taskBuffer * taskBuffer::first=NULL;
taskBuffer::taskBuffer(Stream * myserial)
{
serial = myserial;
next=first;
first=this;
bufferLength=0;
inCommandPayload=PAYLOAD_FALSE;
}
taskBuffer::~taskBuffer()
{
// destructor
}
void taskBuffer::doCommand(uint8_t *commandBuffer, int commandSize) {
for (taskBuffer * t=first;t;t=t->next) t->doCommand2(commandBuffer,commandSize);
}
void taskBuffer::doCommand2(uint8_t *commandBuffer, int commandSize) {
// process commands here to be sent
//_serial->begin(115200);
//ArduinoPins::fastWriteDigital(bus->_txPin, HIGH);
if (_txPin != -1) digitalWrite(_txPin,HIGH);
serial->write(commandBuffer, 7);
serial->write(endChar, 1);
serial->flush();
if (_txPin != -1) digitalWrite(_txPin,LOW);
}
void taskBuffer::init(HardwareSerial &hwSerial, unsigned long baud, int8_t txPin) {
hwSerial.begin(baud, SERIAL_8N1);
new taskBuffer(&hwSerial);
for (taskBuffer * t=first;t;t=t->next) t->_txPin = txPin;
if (txPin != -1) pinMode(txPin, OUTPUT);
if (txPin != -1) digitalWrite(txPin, LOW);
}
void taskBuffer::loop() {
for (taskBuffer * t=first;t;t=t->next) t->loop2();
}
void taskBuffer::loop2() {
// process received commands here
while (serial->available()) {
char ch = serial->read();
if (!inCommandPayload) {
if (ch == STARTBYTE) {
inCommandPayload = PAYLOAD_NORMAL;
bufferLength = 0;
buffer[0] = '\0';
}
} else { // if (inCommandPayload)
if (bufferLength < (COMMAND_BUFFER_SIZE-1))
buffer[bufferLength++] = ch;
if (inCommandPayload > PAYLOAD_NORMAL) {
if (inCommandPayload > 32 + 2) { // String way too long
ch = ENDBYTE; // we end this nonsense
inCommandPayload = PAYLOAD_NORMAL;
DIAG(F("Parse error: Unbalanced string"));
// fall through to ending parsing below
} else if (ch == '"') { // String end
inCommandPayload = PAYLOAD_NORMAL;
continue; // do not fall through
} else
inCommandPayload++;
}
if (inCommandPayload == PAYLOAD_NORMAL) {
if (ch == ENDBYTE) {
buffer[bufferLength] = '\0';
parseRx(buffer);
inCommandPayload = PAYLOAD_FALSE;
break;
} else if (ch == '"') {
inCommandPayload = PAYLOAD_STRING;
}
}
}
}
}
void taskBuffer::parseRx(uint8_t *buf) {
// pass on what we got
bool found = (buf[0] != STARTBYTE);
for (byte *b=buf; b[0] != '\0'; b++) {
if (found) {
parseOne(b);
found=false;
}
if (b[0] == STARTBYTE)
found = true;
}
}
void taskBuffer::parseOne(uint8_t *buf) {
// finaly, process the darn data
while (buf[0] == '<' || buf[0] == ' ')
buf++; // strip off any number of < or spaces
uint8_t toNode = buf[0];
if (toNode != 0) return; // not for master
uint8_t fromNode = buf[1];
if (fromNode == 0) return; // why did out own data come round the ring back to us?
uint8_t opcode = buf[2];
RSproto *bus = RSproto::findBus(0);
RSprotonode *node = bus->findNode(fromNode);
switch (opcode) {
case EXIOPINS:
{node->_numDigitalPins = buf[3];
node->_numAnaloguePins = buf[4];
// See if we already have suitable buffers assigned
if (node->_numDigitalPins>0) {
size_t digitalBytesNeeded = (node->_numDigitalPins + 7) / 8;
if (node->_digitalPinBytes < digitalBytesNeeded) {
// Not enough space, free any existing buffer and allocate a new one
if (node->_digitalPinBytes > 0) free(node->_digitalInputStates);
if ((node->_digitalInputStates = (byte*) calloc(digitalBytesNeeded, 1)) != NULL) {
node->_digitalPinBytes = digitalBytesNeeded;
} else {
DIAG(F("EX-IOExpander485 node:%d ERROR alloc %d bytes"), fromNode, digitalBytesNeeded);
//_deviceState = DEVSTATE_FAILED;
node->_digitalPinBytes = 0;
return;
}
}
}
if (node->_numAnaloguePins>0) {
size_t analogueBytesNeeded = node->_numAnaloguePins * 2;
if (node->_analoguePinBytes < analogueBytesNeeded) {
// Free any existing buffers and allocate new ones.
if (node->_analoguePinBytes > 0) {
free(node->_analogueInputBuffer);
free(node->_analogueInputStates);
free(node->_analoguePinMap);
}
node->_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
node->_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
node->_analoguePinMap = (uint8_t*) calloc(node->_numAnaloguePins, 1);
if (node->_analogueInputStates != NULL &&
node->_analogueInputBuffer != NULL &&
node->_analoguePinMap != NULL) {
node->_analoguePinBytes = analogueBytesNeeded;
} else {
DIAG(F("EX-IOExpander485 node:%d ERROR alloc analog pin bytes"), fromNode);
//_deviceState = DEVSTATE_FAILED;
node->_analoguePinBytes = 0;
return;
}
}
}
node->resFlag = 1;
break;}
case EXIOINITA: {
for (int i = 3; i < node->_numAnaloguePins; i++) {
node->_analoguePinMap[i] = buf[i];
}
node->resFlag = 1;
break;
}
case EXIOVER: {
node->_majorVer = buf[3];
node->_minorVer = buf[4];
node->_patchVer = buf[5];
node->resFlag = 1;
break;
}
case EXIORDY: {
node->resFlag = 1;
break;
}
case EXIOERR: {
node->resFlag = -1;
break;
}
case EXIORDD: {
for (int i = 3; i < (node->_numDigitalPins+7)/8; i++) {
node->_digitalInputStates[i-3] = buf[i];
}
node->resFlag = 1;
break;
}
case EXIORDAN: {
for (int i = 3; i < node->_numAnaloguePins*2; i++) {
node->_analogueInputBuffer[i-3] = buf[i];
}
node->resFlag = 1;
break;
}
}
}
/************************************************************
* RSproto implementation
************************************************************/
// Constructor for RSproto
RSproto::RSproto(uint8_t busNo, HardwareSerial &serial, unsigned long baud, int8_t txPin) {
_serial = &serial;
_baud = baud;
_txPin = txPin;
_busNo = busNo;
task->init(serial, baud, txPin);
if (_waitA < 3) _waitA = 3;
// Add device to HAL device chain
IODevice::addDevice(this);
// Add bus to RSproto chain.
_nextBus = _busList;
_busList = this;
}
/* -= _loop =-
//
// Main loop function for RSproto.
// Work through list of nodes. For each node, in separate loop entries
// When the slot time has finished, move on to the next device.
*/
void RSproto::_loop(unsigned long currentMicros) {
_currentMicros = currentMicros;
//if (_currentNode == NULL) {
// _currentNode = _nodeListStart;
//}
//if (_currentMicros - _cycleStartTime < _cycleTime) return;
//_cycleStartTime = _currentMicros;
//if (_currentNode == NULL) return;
task->loop();
}
// Link to chain of RSproto instances, left over from RSproto template.
RSproto *RSproto::_busList = NULL;
/************************************************************
* RSprotonode implementation
************************************************************/
/* -= RSprotonode =-
//
// Constructor for RSprotonode object
*/
RSprotonode::RSprotonode(VPIN firstVpin, int nPins, uint8_t nodeID) {
_firstVpin = firstVpin;
_nPins = nPins;
_busNo = 0;
_nodeID = nodeID;
//bus = bus->findBus(0);
//_serial = bus->_serialD;
if (_nodeID > 252) _nodeID = 252; // cannot have a node with the frame flags
if (_nodeID < 1) _nodeID = 1; // cannot have a node with the master ID
// Add this device to HAL device list
IODevice::addDevice(this);
_display();
// Add RSprotonode to RSproto object.
RSproto *bus = RSproto::findBus(_busNo);
if (bus != NULL) {
bus->addNode(this);
return;
}
}
bool RSprotonode::_configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) {
if (paramCount != 1) return false;
int pin = vpin - _firstVpin;
uint8_t pullup = (uint8_t)params[0];
uint8_t outBuffer[6] = {EXIODPUP, (uint8_t)pin, pullup};
unsigned long startMillis = millis();
task->doCommand(outBuffer,3);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin);
return false;
}
resFlag = 0;
return true;
}
int RSprotonode::_configureAnalogIn(VPIN vpin) {
int pin = vpin - _firstVpin;
//RSproto *mainrs = RSproto::findBus(_busNo);
uint8_t commandBuffer[5] = {EXIOENAN, (uint8_t) pin};
unsigned long startMillis = millis();
task->doCommand(commandBuffer, 2);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Vpin %u cannot be used as a digital input pin"), pin);
return false;
}
resFlag = 0;
return true;
}
void RSprotonode::_begin() {
uint8_t commandBuffer[4] = {EXIOINIT, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8)};
unsigned long startMillis = millis();
task->doCommand(commandBuffer,4);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINIT"), _nodeID);
}
resFlag = 0;
commandBuffer[0] = EXIOINITA;
startMillis = millis();
task->doCommand(commandBuffer,1);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOINITA"), _nodeID);
}
resFlag = 0;
commandBuffer[0] = EXIOVER;
startMillis = millis();
task->doCommand(commandBuffer,1);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID);
} else DIAG(F("EX-IOExpander device found, Node:%d, Version v%d.%d.%d"), _nodeID, _majorVer, _minorVer, _patchVer);
resFlag = 0;
#ifdef DIAG_IO
_display();
#endif
}
int RSprotonode::_read(VPIN vpin) {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
uint8_t pinByte = pin / 8;
bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8);
return value;
}
void RSprotonode::_write(VPIN vpin, int value) {
if (_deviceState == DEVSTATE_FAILED) return;
int pin = vpin - _firstVpin;
uint8_t digitalOutBuffer[6];
digitalOutBuffer[1] = EXIOWRD;
digitalOutBuffer[2] = (uint8_t) pin;
digitalOutBuffer[3] = (uint8_t) value;
unsigned long startMillis = millis();
task->doCommand(digitalOutBuffer,3);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID);
}
resFlag = 0;
}
int RSprotonode::_readAnalogue(VPIN vpin) {
if (_deviceState == DEVSTATE_FAILED) return 0;
int pin = vpin - _firstVpin;
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
if (_analoguePinMap[aPin] == pin) {
uint8_t _pinLSBByte = aPin * 2;
uint8_t _pinMSBByte = _pinLSBByte + 1;
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
}
}
return -1; // pin not found in table
}
void RSprotonode::_writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) {
uint8_t servoBuffer[7];
int pin = vpin - _firstVpin;
servoBuffer[0] = EXIOWRAN;
servoBuffer[1] = (uint8_t) pin;
servoBuffer[2] = (uint8_t) value & 0xFF;
servoBuffer[3] = (uint8_t) value >> 8;
servoBuffer[4] = (uint8_t) profile;
servoBuffer[5] = (uint8_t) duration & 0xFF;
servoBuffer[6] = (uint8_t) duration >> 8;
unsigned long startMillis = millis();
task->doCommand(servoBuffer,7);
while (resFlag == 0 && millis() - startMillis < 500); // blocking for now
if (resFlag != 1) {
DIAG(F("EX-IOExpander485 Node:%d ERROR EXIOVER"), _nodeID);
}
resFlag = 0;
}