mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2024-11-25 00:56:13 +01:00
401 lines
17 KiB
C++
401 lines
17 KiB
C++
/*
|
|
* © 2022, Peter Cole. All rights reserved.
|
|
*
|
|
* This file is part of EX-CommandStation
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* The IO_EXIOExpander.h device driver integrates with one or more EX-IOExpander devices.
|
|
* This device driver will configure the device on startup, along with
|
|
* interacting with the device for all input/output duties.
|
|
*
|
|
* To create EX-IOExpander devices, these are defined in myHal.cpp:
|
|
* (Note the device driver is included by default)
|
|
*
|
|
* void halSetup() {
|
|
* // EXIOExpander::create(vpin, num_vpins, i2c_address);
|
|
* EXIOExpander::create(800, 18, 0x65);
|
|
* }
|
|
*
|
|
* All pins on an EX-IOExpander device are allocated according to the pin map for the specific
|
|
* device in use. There is no way for the device driver to sanity check pins are used for the
|
|
* correct purpose, however the EX-IOExpander device's pin map will prevent pins being used
|
|
* incorrectly (eg. A6/7 on Nano cannot be used for digital input/output).
|
|
*
|
|
* The total number of pins cannot exceed 256 because of the communications packet format.
|
|
* The number of analogue inputs cannot exceed 16 because of a limit on the maximum
|
|
* I2C packet size of 32 bytes (in the Wire library).
|
|
*/
|
|
|
|
#ifndef IO_EX_IOEXPANDER_H
|
|
#define IO_EX_IOEXPANDER_H
|
|
|
|
#include "IODevice.h"
|
|
#include "I2CManager.h"
|
|
#include "DIAG.h"
|
|
#include "FSH.h"
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
/*
|
|
* IODevice subclass for EX-IOExpander.
|
|
*/
|
|
class EXIOExpander : public IODevice {
|
|
public:
|
|
|
|
enum ProfileType : uint8_t {
|
|
Instant = 0, // Moves immediately between positions (if duration not specified)
|
|
UseDuration = 0, // Use specified duration
|
|
Fast = 1, // Takes around 500ms end-to-end
|
|
Medium = 2, // 1 second end-to-end
|
|
Slow = 3, // 2 seconds end-to-end
|
|
Bounce = 4, // For semaphores/turnouts with a bit of bounce!!
|
|
NoPowerOff = 0x80, // Flag to be ORed in to suppress power off after move.
|
|
};
|
|
|
|
static void create(VPIN vpin, int nPins, I2CAddress i2cAddress) {
|
|
if (checkNoOverlap(vpin, nPins, i2cAddress)) new EXIOExpander(vpin, nPins, i2cAddress);
|
|
}
|
|
|
|
private:
|
|
// Constructor
|
|
EXIOExpander(VPIN firstVpin, int nPins, I2CAddress i2cAddress) {
|
|
_firstVpin = firstVpin;
|
|
// Number of pins cannot exceed 256 (1 byte) because of I2C message structure.
|
|
if (nPins > 256) nPins = 256;
|
|
_nPins = nPins;
|
|
_I2CAddress = i2cAddress;
|
|
addDevice(this);
|
|
}
|
|
|
|
void _begin() {
|
|
uint8_t status;
|
|
// Initialise EX-IOExander device
|
|
I2CManager.begin();
|
|
if (I2CManager.exists(_I2CAddress)) {
|
|
// Send config, if EXIOPINS returned, we're good, setup pin buffers, otherwise go offline
|
|
// NB The I2C calls here are done as blocking calls, as they're not time-critical
|
|
// during initialisation and the reads require waiting for a response anyway.
|
|
// Hence we can allocate I/O buffers from the stack.
|
|
uint8_t receiveBuffer[3];
|
|
uint8_t commandBuffer[4] = {EXIOINIT, (uint8_t)_nPins, (uint8_t)(_firstVpin & 0xFF), (uint8_t)(_firstVpin >> 8)};
|
|
status = I2CManager.read(_I2CAddress, receiveBuffer, sizeof(receiveBuffer), commandBuffer, sizeof(commandBuffer));
|
|
if (status == I2C_STATUS_OK) {
|
|
if (receiveBuffer[0] == EXIOPINS) {
|
|
_numDigitalPins = receiveBuffer[1];
|
|
_numAnaloguePins = receiveBuffer[2];
|
|
|
|
// See if we already have suitable buffers assigned
|
|
size_t digitalBytesNeeded = (_numDigitalPins + 7) / 8;
|
|
if (_digitalPinBytes < digitalBytesNeeded) {
|
|
// Not enough space, free any existing buffer and allocate a new one
|
|
if (_digitalPinBytes > 0) free(_digitalInputStates);
|
|
_digitalInputStates = (byte*) calloc(_digitalPinBytes, 1);
|
|
_digitalPinBytes = digitalBytesNeeded;
|
|
}
|
|
size_t analogueBytesNeeded = _numAnaloguePins * 2;
|
|
if (_analoguePinBytes < analogueBytesNeeded) {
|
|
// Free any existing buffers and allocate new ones.
|
|
if (_analoguePinBytes > 0) {
|
|
free(_analogueInputBuffer);
|
|
free(_analogueInputStates);
|
|
free(_analoguePinMap);
|
|
}
|
|
_analogueInputStates = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
|
_analogueInputBuffer = (uint8_t*) calloc(analogueBytesNeeded, 1);
|
|
_analoguePinMap = (uint8_t*) calloc(_numAnaloguePins, 1);
|
|
_analoguePinBytes = analogueBytesNeeded;
|
|
}
|
|
} else {
|
|
DIAG(F("EX-IOExpander I2C:%s ERROR configuring device"), _I2CAddress.toString());
|
|
_deviceState = DEVSTATE_FAILED;
|
|
return;
|
|
}
|
|
}
|
|
// We now need to retrieve the analogue pin map
|
|
if (status == I2C_STATUS_OK) {
|
|
commandBuffer[0] = EXIOINITA;
|
|
status = I2CManager.read(_I2CAddress, _analoguePinMap, _numAnaloguePins, commandBuffer, 1);
|
|
}
|
|
if (status == I2C_STATUS_OK) {
|
|
// Attempt to get version, if we don't get it, we don't care, don't go offline
|
|
uint8_t versionBuffer[3];
|
|
commandBuffer[0] = EXIOVER;
|
|
if (I2CManager.read(_I2CAddress, versionBuffer, sizeof(versionBuffer), commandBuffer, 1) == I2C_STATUS_OK) {
|
|
_majorVer = versionBuffer[0];
|
|
_minorVer = versionBuffer[1];
|
|
_patchVer = versionBuffer[2];
|
|
}
|
|
DIAG(F("EX-IOExpander device found, I2C:%s, Version v%d.%d.%d"),
|
|
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer);
|
|
|
|
#ifdef DIAG_IO
|
|
_display();
|
|
#endif
|
|
}
|
|
if (status != I2C_STATUS_OK)
|
|
reportError(status);
|
|
|
|
} else {
|
|
DIAG(F("EX-IOExpander I2C:%s device not found"), _I2CAddress.toString());
|
|
_deviceState = DEVSTATE_FAILED;
|
|
}
|
|
}
|
|
|
|
// Digital input pin configuration, used to enable on EX-IOExpander device and set pullups if requested.
|
|
// Configuration isn't done frequently so we can use blocking I2C calls here, and so buffers can
|
|
// be allocated from the stack to reduce RAM allocation.
|
|
bool _configure(VPIN vpin, ConfigTypeEnum configType, int paramCount, int params[]) override {
|
|
if (paramCount != 1) return false;
|
|
int pin = vpin - _firstVpin;
|
|
if (configType == CONFIGURE_INPUT) {
|
|
uint8_t pullup = params[0];
|
|
uint8_t outBuffer[] = {EXIODPUP, (uint8_t)pin, pullup};
|
|
uint8_t responseBuffer[1];
|
|
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
|
|
outBuffer, sizeof(outBuffer));
|
|
if (status == I2C_STATUS_OK) {
|
|
if (responseBuffer[0] == EXIORDY) {
|
|
return true;
|
|
} else {
|
|
DIAG(F("EXIOVpin %u cannot be used as a digital input pin"), (int)vpin);
|
|
}
|
|
} else
|
|
reportError(status);
|
|
} else if (configType == CONFIGURE_ANALOGINPUT) {
|
|
// TODO: Consider moving code from _configureAnalogIn() to here and remove _configureAnalogIn
|
|
// from IODevice class definition. Not urgent, but each virtual function defined
|
|
// means increasing the RAM requirement of every HAL device driver, whether it's relevant
|
|
// to the driver or not.
|
|
return false;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Analogue input pin configuration, used to enable an EX-IOExpander device.
|
|
// Use I2C blocking calls and allocate buffers from stack to save RAM.
|
|
int _configureAnalogIn(VPIN vpin) override {
|
|
int pin = vpin - _firstVpin;
|
|
uint8_t commandBuffer[] = {EXIOENAN, (uint8_t)pin};
|
|
uint8_t responseBuffer[1];
|
|
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, sizeof(responseBuffer),
|
|
commandBuffer, sizeof(commandBuffer));
|
|
if (status == I2C_STATUS_OK) {
|
|
if (responseBuffer[0] == EXIORDY) {
|
|
return true;
|
|
} else {
|
|
DIAG(F("EX-IOExpander: Vpin %u cannot be used as an analogue input pin"), (int)vpin);
|
|
}
|
|
} else
|
|
reportError(status);
|
|
|
|
return false;
|
|
}
|
|
|
|
// Main loop, collect both digital and analogue pin states continuously (faster sensor/input reads)
|
|
void _loop(unsigned long currentMicros) override {
|
|
if (_deviceState == DEVSTATE_FAILED) return; // If device failed, return
|
|
|
|
// Request block is used for analogue and digital reads from the IOExpander, which are performed
|
|
// on a cyclic basis. Writes are performed synchronously as and when requested.
|
|
|
|
if (_readState != RDS_IDLE) {
|
|
if (_i2crb.isBusy()) return; // If I2C operation still in progress, return
|
|
|
|
uint8_t status = _i2crb.status;
|
|
if (status == I2C_STATUS_OK) { // If device request ok, read input data
|
|
|
|
// First check if we need to process received data
|
|
if (_readState == RDS_ANALOGUE) {
|
|
// Read of analogue values was in progress, so process received values
|
|
// Here we need to copy the values from input buffer to the analogue value array. We need to
|
|
// do this to avoid tearing of the values (i.e. one byte of a two-byte value being changed
|
|
// while the value is being read).
|
|
memcpy(_analogueInputStates, _analogueInputBuffer, _analoguePinBytes); // Copy I2C input buffer to states
|
|
|
|
} else if (_readState == RDS_DIGITAL) {
|
|
// Read of digital states was in progress, so process received values
|
|
// The received digital states are placed directly into the digital buffer on receipt,
|
|
// so don't need any further processing at this point (unless we want to check for
|
|
// changes and notify them to subscribers, to avoid the need for polling - see IO_GPIOBase.h).
|
|
}
|
|
} else
|
|
reportError(status, false); // report eror but don't go offline.
|
|
|
|
_readState = RDS_IDLE;
|
|
}
|
|
|
|
// If we're not doing anything now, check to see if a new input transfer is due.
|
|
if (_readState == RDS_IDLE) {
|
|
if (currentMicros - _lastDigitalRead > _digitalRefresh) { // Delay for digital read refresh
|
|
// Issue new read request for digital states. As the request is non-blocking, the buffer has to
|
|
// be allocated from heap (object state).
|
|
_readCommandBuffer[0] = EXIORDD;
|
|
I2CManager.read(_I2CAddress, _digitalInputStates, (_numDigitalPins+7)/8, _readCommandBuffer, 1, &_i2crb);
|
|
// non-blocking read
|
|
_lastDigitalRead = currentMicros;
|
|
_readState = RDS_DIGITAL;
|
|
} else if (currentMicros - _lastAnalogueRead > _analogueRefresh) { // Delay for analogue read refresh
|
|
// Issue new read for analogue input states
|
|
_readCommandBuffer[0] = EXIORDAN;
|
|
I2CManager.read(_I2CAddress, _analogueInputBuffer,
|
|
_numAnaloguePins * 2, _readCommandBuffer, 1, &_i2crb);
|
|
_lastAnalogueRead = currentMicros;
|
|
_readState = RDS_ANALOGUE;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Obtain the correct analogue input value, with reference to the analogue
|
|
// pin map.
|
|
// Obtain the correct analogue input value
|
|
int _readAnalogue(VPIN vpin) override {
|
|
if (_deviceState == DEVSTATE_FAILED) return 0;
|
|
int pin = vpin - _firstVpin;
|
|
for (uint8_t aPin = 0; aPin < _numAnaloguePins; aPin++) {
|
|
if (_analoguePinMap[aPin] == pin) {
|
|
uint8_t _pinLSBByte = aPin * 2;
|
|
uint8_t _pinMSBByte = _pinLSBByte + 1;
|
|
return (_analogueInputStates[_pinMSBByte] << 8) + _analogueInputStates[_pinLSBByte];
|
|
}
|
|
}
|
|
return -1; // pin not found in table
|
|
}
|
|
|
|
// Obtain the correct digital input value
|
|
int _read(VPIN vpin) override {
|
|
if (_deviceState == DEVSTATE_FAILED) return 0;
|
|
int pin = vpin - _firstVpin;
|
|
uint8_t pinByte = pin / 8;
|
|
bool value = bitRead(_digitalInputStates[pinByte], pin - pinByte * 8);
|
|
return value;
|
|
}
|
|
|
|
// Write digital value. We could have an output buffer of states, that is periodically
|
|
// written to the device if there are any changes; this would reduce the I2C overhead
|
|
// if lots of output requests are being made. We could also cache the last value
|
|
// sent so that we don't write the same value over and over to the output.
|
|
// However, for the time being, we just write the current value (blocking I2C) to the
|
|
// IOExpander node. As it is a blocking request, we can use buffers allocated from
|
|
// the stack to save RAM allocation.
|
|
void _write(VPIN vpin, int value) override {
|
|
uint8_t digitalOutBuffer[3];
|
|
uint8_t responseBuffer[1];
|
|
if (_deviceState == DEVSTATE_FAILED) return;
|
|
int pin = vpin - _firstVpin;
|
|
digitalOutBuffer[0] = EXIOWRD;
|
|
digitalOutBuffer[1] = pin;
|
|
digitalOutBuffer[2] = value;
|
|
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, digitalOutBuffer, 3);
|
|
if (status != I2C_STATUS_OK) {
|
|
reportError(status);
|
|
} else {
|
|
if (responseBuffer[0] != EXIORDY) {
|
|
DIAG(F("Vpin %u cannot be used as a digital output pin"), (int)vpin);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Write analogue (integer) value. Write the parameters (blocking I2C) to the
|
|
// IOExpander node. As it is a blocking request, we can use buffers allocated from
|
|
// the stack to reduce RAM allocation.
|
|
void _writeAnalogue(VPIN vpin, int value, uint8_t profile, uint16_t duration) override {
|
|
uint8_t servoBuffer[7];
|
|
uint8_t responseBuffer[1];
|
|
|
|
if (_deviceState == DEVSTATE_FAILED) return;
|
|
int pin = vpin - _firstVpin;
|
|
#ifdef DIAG_IO
|
|
DIAG(F("Servo: WriteAnalogue Vpin:%u Value:%d Profile:%d Duration:%d %S"),
|
|
vpin, value, profile, duration, _deviceState == DEVSTATE_FAILED?F("DEVSTATE_FAILED"):F(""));
|
|
#endif
|
|
servoBuffer[0] = EXIOWRAN;
|
|
servoBuffer[1] = pin;
|
|
servoBuffer[2] = value & 0xFF;
|
|
servoBuffer[3] = value >> 8;
|
|
servoBuffer[4] = profile;
|
|
servoBuffer[5] = duration & 0xFF;
|
|
servoBuffer[6] = duration >> 8;
|
|
uint8_t status = I2CManager.read(_I2CAddress, responseBuffer, 1, servoBuffer, 7);
|
|
if (status != I2C_STATUS_OK) {
|
|
DIAG(F("EX-IOExpander I2C:%s Error:%d %S"), _I2CAddress.toString(), status, I2CManager.getErrorMessage(status));
|
|
_deviceState = DEVSTATE_FAILED;
|
|
} else {
|
|
if (responseBuffer[0] != EXIORDY) {
|
|
DIAG(F("Vpin %u cannot be used as a servo/PWM pin"), (int)vpin);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Display device information and status.
|
|
void _display() override {
|
|
DIAG(F("EX-IOExpander I2C:%s v%d.%d.%d Vpins %u-%u %S"),
|
|
_I2CAddress.toString(), _majorVer, _minorVer, _patchVer,
|
|
(int)_firstVpin, (int)_firstVpin+_nPins-1,
|
|
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
|
}
|
|
|
|
// Helper function for error handling
|
|
void reportError(uint8_t status, bool fail=true) {
|
|
DIAG(F("EX-IOExpander I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
|
|
status, I2CManager.getErrorMessage(status));
|
|
if (fail)
|
|
_deviceState = DEVSTATE_FAILED;
|
|
}
|
|
|
|
uint8_t _numDigitalPins = 0;
|
|
uint8_t _numAnaloguePins = 0;
|
|
|
|
uint8_t _majorVer = 0;
|
|
uint8_t _minorVer = 0;
|
|
uint8_t _patchVer = 0;
|
|
|
|
uint8_t* _digitalInputStates;
|
|
uint8_t* _analogueInputStates;
|
|
uint8_t* _analogueInputBuffer; // buffer for I2C input transfers
|
|
uint8_t _readCommandBuffer[1];
|
|
|
|
uint8_t _digitalPinBytes = 0; // Size of allocated memory buffer (may be longer than needed)
|
|
uint8_t _analoguePinBytes = 0; // Size of allocated memory buffers (may be longer than needed)
|
|
uint8_t* _analoguePinMap;
|
|
I2CRB _i2crb;
|
|
|
|
enum {RDS_IDLE, RDS_DIGITAL, RDS_ANALOGUE}; // Read operation states
|
|
uint8_t _readState = RDS_IDLE;
|
|
|
|
unsigned long _lastDigitalRead = 0;
|
|
unsigned long _lastAnalogueRead = 0;
|
|
const unsigned long _digitalRefresh = 10000UL; // Delay refreshing digital inputs for 10ms
|
|
const unsigned long _analogueRefresh = 50000UL; // Delay refreshing analogue inputs for 50ms
|
|
|
|
// EX-IOExpander protocol flags
|
|
enum {
|
|
EXIOINIT = 0xE0, // Flag to initialise setup procedure
|
|
EXIORDY = 0xE1, // Flag we have completed setup procedure, also for EX-IO to ACK setup
|
|
EXIODPUP = 0xE2, // Flag we're sending digital pin pullup configuration
|
|
EXIOVER = 0xE3, // Flag to get version
|
|
EXIORDAN = 0xE4, // Flag to read an analogue input
|
|
EXIOWRD = 0xE5, // Flag for digital write
|
|
EXIORDD = 0xE6, // Flag to read digital input
|
|
EXIOENAN = 0xE7, // Flag to enable an analogue pin
|
|
EXIOINITA = 0xE8, // Flag we're receiving analogue pin mappings
|
|
EXIOPINS = 0xE9, // Flag we're receiving pin counts for buffers
|
|
EXIOWRAN = 0xEA, // Flag we're sending an analogue write (PWM)
|
|
EXIOERR = 0xEF, // Flag we've received an error
|
|
};
|
|
};
|
|
|
|
#endif
|