1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-30 11:36:13 +01:00
CommandStation-EX/enc28j60.cpp
2021-11-11 13:31:59 +00:00

612 lines
19 KiB
C++

// Microchip ENC28J60 Ethernet Interface Driver
// Author: Guido Socher
// Copyright: GPL V2
//
// Based on the enc28j60.c file from the AVRlib library by Pascal Stang.
// For AVRlib See http://www.procyonengineering.com/
// Used with explicit permission of Pascal Stang.
//
// 2010-05-20 <jc@wippler.nl>
#if ARDUINO >= 100
#include <Arduino.h> // Arduino 1.0
#else
#include <Wprogram.h> // Arduino 0022
#endif
#include <SPI.h>
#include "enc28j60.h"
uint16_t ENC28J60::bufferSize;
bool ENC28J60::broadcast_enabled = false;
bool ENC28J60::promiscuous_enabled = false;
// ENC28J60 Control Registers
// Control register definitions are a combination of address,
// bank number, and Ethernet/MAC/PHY indicator bits.
// - Register address (bits 0-4)
// - Bank number (bits 5-6)
// - MAC/PHY indicator (bit 7)
#define ADDR_MASK 0x1F
#define BANK_MASK 0x60
#define SPRD_MASK 0x80
// All-bank registers
#define EIE 0x1B
#define EIR 0x1C
#define ESTAT 0x1D
#define ECON2 0x1E
#define ECON1 0x1F
// Bank 0 registers
#define ERDPT (0x00|0x00)
#define EWRPT (0x02|0x00)
#define ETXST (0x04|0x00)
#define ETXND (0x06|0x00)
#define ERXST (0x08|0x00)
#define ERXND (0x0A|0x00)
#define ERXRDPT (0x0C|0x00)
// #define ERXWRPT (0x0E|0x00)
#define EDMAST (0x10|0x00)
#define EDMAND (0x12|0x00)
// #define EDMADST (0x14|0x00)
#define EDMACS (0x16|0x00)
// Bank 1 registers
#define EHT0 (0x00|0x20)
#define EHT1 (0x01|0x20)
#define EHT2 (0x02|0x20)
#define EHT3 (0x03|0x20)
#define EHT4 (0x04|0x20)
#define EHT5 (0x05|0x20)
#define EHT6 (0x06|0x20)
#define EHT7 (0x07|0x20)
#define EPMM0 (0x08|0x20)
#define EPMM1 (0x09|0x20)
#define EPMM2 (0x0A|0x20)
#define EPMM3 (0x0B|0x20)
#define EPMM4 (0x0C|0x20)
#define EPMM5 (0x0D|0x20)
#define EPMM6 (0x0E|0x20)
#define EPMM7 (0x0F|0x20)
#define EPMCS (0x10|0x20)
// #define EPMO (0x14|0x20)
#define EWOLIE (0x16|0x20)
#define EWOLIR (0x17|0x20)
#define ERXFCON (0x18|0x20)
#define EPKTCNT (0x19|0x20)
// Bank 2 registers
#define MACON1 (0x00|0x40|0x80)
#define MACON3 (0x02|0x40|0x80)
#define MACON4 (0x03|0x40|0x80)
#define MABBIPG (0x04|0x40|0x80)
#define MAIPG (0x06|0x40|0x80)
#define MACLCON1 (0x08|0x40|0x80)
#define MACLCON2 (0x09|0x40|0x80)
#define MAMXFL (0x0A|0x40|0x80)
#define MAPHSUP (0x0D|0x40|0x80)
#define MICON (0x11|0x40|0x80)
#define MICMD (0x12|0x40|0x80)
#define MIREGADR (0x14|0x40|0x80)
#define MIWR (0x16|0x40|0x80)
#define MIRD (0x18|0x40|0x80)
// Bank 3 registers
#define MAADR1 (0x00|0x60|0x80)
#define MAADR0 (0x01|0x60|0x80)
#define MAADR3 (0x02|0x60|0x80)
#define MAADR2 (0x03|0x60|0x80)
#define MAADR5 (0x04|0x60|0x80)
#define MAADR4 (0x05|0x60|0x80)
#define EBSTSD (0x06|0x60)
#define EBSTCON (0x07|0x60)
#define EBSTCS (0x08|0x60)
#define MISTAT (0x0A|0x60|0x80)
#define EREVID (0x12|0x60)
#define ECOCON (0x15|0x60)
#define EFLOCON (0x17|0x60)
#define EPAUS (0x18|0x60)
// ENC28J60 ERXFCON Register Bit Definitions
#define ERXFCON_UCEN 0x80
#define ERXFCON_ANDOR 0x40
#define ERXFCON_CRCEN 0x20
#define ERXFCON_PMEN 0x10
#define ERXFCON_MPEN 0x08
#define ERXFCON_HTEN 0x04
#define ERXFCON_MCEN 0x02
#define ERXFCON_BCEN 0x01
// ENC28J60 EIE Register Bit Definitions
#define EIE_INTIE 0x80
#define EIE_PKTIE 0x40
#define EIE_DMAIE 0x20
#define EIE_LINKIE 0x10
#define EIE_TXIE 0x08
#define EIE_WOLIE 0x04
#define EIE_TXERIE 0x02
#define EIE_RXERIE 0x01
// ENC28J60 EIR Register Bit Definitions
#define EIR_PKTIF 0x40
#define EIR_DMAIF 0x20
#define EIR_LINKIF 0x10
#define EIR_TXIF 0x08
#define EIR_WOLIF 0x04
#define EIR_TXERIF 0x02
#define EIR_RXERIF 0x01
// ENC28J60 ESTAT Register Bit Definitions
#define ESTAT_INT 0x80
#define ESTAT_LATECOL 0x10
#define ESTAT_RXBUSY 0x04
#define ESTAT_TXABRT 0x02
#define ESTAT_CLKRDY 0x01
// ENC28J60 ECON2 Register Bit Definitions
#define ECON2_AUTOINC 0x80
#define ECON2_PKTDEC 0x40
#define ECON2_PWRSV 0x20
#define ECON2_VRPS 0x08
// ENC28J60 ECON1 Register Bit Definitions
#define ECON1_TXRST 0x80
#define ECON1_RXRST 0x40
#define ECON1_DMAST 0x20
#define ECON1_CSUMEN 0x10
#define ECON1_TXRTS 0x08
#define ECON1_RXEN 0x04
#define ECON1_BSEL1 0x02
#define ECON1_BSEL0 0x01
// ENC28J60 MACON1 Register Bit Definitions
#define MACON1_LOOPBK 0x10
#define MACON1_TXPAUS 0x08
#define MACON1_RXPAUS 0x04
#define MACON1_PASSALL 0x02
#define MACON1_MARXEN 0x01
// ENC28J60 MACON3 Register Bit Definitions
#define MACON3_PADCFG2 0x80
#define MACON3_PADCFG1 0x40
#define MACON3_PADCFG0 0x20
#define MACON3_TXCRCEN 0x10
#define MACON3_PHDRLEN 0x08
#define MACON3_HFRMLEN 0x04
#define MACON3_FRMLNEN 0x02
#define MACON3_FULDPX 0x01
// ENC28J60 MICMD Register Bit Definitions
#define MICMD_MIISCAN 0x02
#define MICMD_MIIRD 0x01
// ENC28J60 MISTAT Register Bit Definitions
#define MISTAT_NVALID 0x04
#define MISTAT_SCAN 0x02
#define MISTAT_BUSY 0x01
// ENC28J60 EBSTCON Register Bit Definitions
#define EBSTCON_PSV2 0x80
#define EBSTCON_PSV1 0x40
#define EBSTCON_PSV0 0x20
#define EBSTCON_PSEL 0x10
#define EBSTCON_TMSEL1 0x08
#define EBSTCON_TMSEL0 0x04
#define EBSTCON_TME 0x02
#define EBSTCON_BISTST 0x01
// PHY registers
#define PHCON1 0x00
#define PHSTAT1 0x01
#define PHHID1 0x02
#define PHHID2 0x03
#define PHCON2 0x10
#define PHSTAT2 0x11
#define PHIE 0x12
#define PHIR 0x13
#define PHLCON 0x14
// ENC28J60 PHY PHCON1 Register Bit Definitions
#define PHCON1_PRST 0x8000
#define PHCON1_PLOOPBK 0x4000
#define PHCON1_PPWRSV 0x0800
#define PHCON1_PDPXMD 0x0100
// ENC28J60 PHY PHSTAT1 Register Bit Definitions
#define PHSTAT1_PFDPX 0x1000
#define PHSTAT1_PHDPX 0x0800
#define PHSTAT1_LLSTAT 0x0004
#define PHSTAT1_JBSTAT 0x0002
// ENC28J60 PHY PHCON2 Register Bit Definitions
#define PHCON2_FRCLINK 0x4000
#define PHCON2_TXDIS 0x2000
#define PHCON2_JABBER 0x0400
#define PHCON2_HDLDIS 0x0100
// ENC28J60 Packet Control Byte Bit Definitions
#define PKTCTRL_PHUGEEN 0x08
#define PKTCTRL_PPADEN 0x04
#define PKTCTRL_PCRCEN 0x02
#define PKTCTRL_POVERRIDE 0x01
// SPI operation codes
#define ENC28J60_READ_CTRL_REG 0x00
#define ENC28J60_READ_BUF_MEM 0x3A
#define ENC28J60_WRITE_CTRL_REG 0x40
#define ENC28J60_WRITE_BUF_MEM 0x7A
#define ENC28J60_BIT_FIELD_SET 0x80
#define ENC28J60_BIT_FIELD_CLR 0xA0
#define ENC28J60_SOFT_RESET 0xFF
// max frame length which the controller will accept:
// (note: maximum ethernet frame length would be 1518)
#define MAX_FRAMELEN 1500
#define SPI_SPEED 10000000
static byte Enc28j60Bank;
static byte selectPin;
static uint8_t selectMask;
volatile static uint8_t *selectPort;
void ENC28J60::initSPI () {
pinMode(selectPin, OUTPUT);
digitalWrite(selectPin, HIGH);
pinMode(MOSI, OUTPUT);
pinMode(SCK, OUTPUT);
pinMode(MISO, INPUT);
digitalWrite(MOSI, HIGH);
digitalWrite(MOSI, LOW);
digitalWrite(SCK, LOW);
#ifdef ARDUINO_ARCH_AVR
selectPort = portOutputRegister(digitalPinToPort(selectPin));
selectMask = digitalPinToBitMask(selectPin);
#endif
}
static void enableChip () {
#ifdef ARDUINO_ARCH_AVR
cli();
*selectPort &= ~selectMask;
sei();
#else
digitalWrite(selectPin, LOW);
#endif
}
static void disableChip () {
#ifdef ARDUINO_ARCH_AVR
cli();
*selectPort |= selectMask;
sei();
#else
digitalWrite(selectPin, HIGH);
#endif
}
static void beginTransaction() {
SPI.beginTransaction(SPISettings(SPI_SPEED, MSBFIRST, SPI_MODE0));
enableChip();
}
static void endTransaction() {
disableChip();
SPI.endTransaction();
}
static byte readOp (byte op, byte address) {
beginTransaction();
SPI.transfer(op | (address & ADDR_MASK));
byte result = SPI.transfer(0x00);
if (address & 0x80)
result = SPI.transfer(0x00);
endTransaction();
return result;
}
static void writeOp (byte op, byte address, byte data) {
beginTransaction();
SPI.transfer(op | (address & ADDR_MASK));
SPI.transfer(data);
endTransaction();
}
static void readBuf(uint16_t len, byte* data) {
beginTransaction();
SPI.transfer(ENC28J60_READ_BUF_MEM);
while (len--)
*data++ = SPI.transfer(0x00);
endTransaction();
}
static void writeBuf(uint16_t len, const byte* data) {
beginTransaction();
SPI.transfer(ENC28J60_WRITE_BUF_MEM);
while (len--)
SPI.transfer(*data++);
endTransaction();
}
static void SetBank (byte address) {
if ((address & BANK_MASK) != Enc28j60Bank) {
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_BSEL1|ECON1_BSEL0);
Enc28j60Bank = address & BANK_MASK;
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, Enc28j60Bank>>5);
}
}
static byte readRegByte (byte address) {
SetBank(address);
return readOp(ENC28J60_READ_CTRL_REG, address);
}
static uint16_t readReg(byte address) {
return readRegByte(address) + (readRegByte(address+1) << 8);
}
static void writeRegByte (byte address, byte data) {
SetBank(address);
writeOp(ENC28J60_WRITE_CTRL_REG, address, data);
}
static void writeReg(byte address, uint16_t data) {
writeRegByte(address, data);
writeRegByte(address + 1, data >> 8);
}
static uint16_t readPhyByte (byte address) {
writeRegByte(MIREGADR, address);
writeRegByte(MICMD, MICMD_MIIRD);
while (readRegByte(MISTAT) & MISTAT_BUSY)
;
writeRegByte(MICMD, 0x00);
return readRegByte(MIRD+1);
}
static void writePhy (byte address, uint16_t data) {
writeRegByte(MIREGADR, address);
writeReg(MIWR, data);
while (readRegByte(MISTAT) & MISTAT_BUSY)
;
}
byte ENC28J60::initialize (uint16_t size, const byte* macaddr, byte csPin) {
bufferSize = size;
selectPin = csPin;
initSPI();
disableChip();
writeOp(ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET);
delay(2); // errata B7/2
while (!readOp(ENC28J60_READ_CTRL_REG, ESTAT) & ESTAT_CLKRDY)
;
writeReg(ERXST, RXSTART_INIT);
writeReg(ERXRDPT, RXSTART_INIT);
writeReg(ERXND, RXSTOP_INIT);
writeReg(ETXST, TXSTART_INIT);
writeReg(ETXND, TXSTOP_INIT);
// Stretch pulses for LED, LED_A=Link, LED_B=activity
writePhy(PHLCON, 0x476);
writeRegByte(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_PMEN|ERXFCON_BCEN);
writeReg(EPMM0, 0x303f);
writeReg(EPMCS, 0xf7f9);
writeRegByte(MACON1, MACON1_MARXEN);
writeOp(ENC28J60_BIT_FIELD_SET, MACON3,
MACON3_PADCFG0|MACON3_TXCRCEN|MACON3_FRMLNEN);
writeReg(MAIPG, 0x0C12);
writeRegByte(MABBIPG, 0x12);
writeReg(MAMXFL, MAX_FRAMELEN);
writeRegByte(MAADR5, macaddr[0]);
writeRegByte(MAADR4, macaddr[1]);
writeRegByte(MAADR3, macaddr[2]);
writeRegByte(MAADR2, macaddr[3]);
writeRegByte(MAADR1, macaddr[4]);
writeRegByte(MAADR0, macaddr[5]);
writePhy(PHCON2, PHCON2_HDLDIS);
SetBank(ECON1);
writeOp(ENC28J60_BIT_FIELD_SET, EIE, EIE_INTIE|EIE_PKTIE);
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
byte rev = readRegByte(EREVID);
// microchip forgot to step the number on the silicon when they
// released the revision B7. 6 is now rev B7. We still have
// to see what they do when they release B8. At the moment
// there is no B8 out yet
if (rev > 5) ++rev;
return rev;
}
bool ENC28J60::isLinkUp() {
return (readPhyByte(PHSTAT2) >> 2) & 1;
}
/*
struct __attribute__((__packed__)) transmit_status_vector {
uint16_t transmitByteCount;
byte transmitCollisionCount : 4;
byte transmitCrcError : 1;
byte transmitLengthCheckError : 1;
byte transmitLengthOutRangeError : 1;
byte transmitDone : 1;
byte transmitMulticast : 1;
byte transmitBroadcast : 1;
byte transmitPacketDefer : 1;
byte transmitExcessiveDefer : 1;
byte transmitExcessiveCollision : 1;
byte transmitLateCollision : 1;
byte transmitGiant : 1;
byte transmitUnderrun : 1;
uint16_t totalTransmitted;
byte transmitControlFrame : 1;
byte transmitPauseControlFrame : 1;
byte backpressureApplied : 1;
byte transmitVLAN : 1;
byte zero : 4;
};
*/
struct transmit_status_vector {
uint8_t bytes[7];
};
#if ETHERCARD_SEND_PIPELINING
#define BREAKORCONTINUE retry=0; continue;
#else
#define BREAKORCONTINUE break;
#endif
void ENC28J60::packetSend(uint16_t len) {
byte retry = 0;
#if ETHERCARD_SEND_PIPELINING
goto resume_last_transmission;
#endif
while (1) {
// latest errata sheet: DS80349C
// always reset transmit logic (Errata Issue 12)
// the Microchip TCP/IP stack implementation used to first check
// whether TXERIF is set and only then reset the transmit logic
// but this has been changed in later versions; possibly they
// have a reason for this; they don't mention this in the errata
// sheet
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRST);
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRST);
writeOp(ENC28J60_BIT_FIELD_CLR, EIR, EIR_TXERIF|EIR_TXIF);
// prepare new transmission
if (retry == 0) {
writeReg(EWRPT, TXSTART_INIT);
writeReg(ETXND, TXSTART_INIT+len);
writeOp(ENC28J60_WRITE_BUF_MEM, 0, 0x00);
writeBuf(len, buffer);
}
// initiate transmission
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);
#if ETHERCARD_SEND_PIPELINING
if (retry == 0) return;
#endif
resume_last_transmission:
// wait until transmission has finished; referring to the data sheet and
// to the errata (Errata Issue 13; Example 1) you only need to wait until either
// TXIF or TXERIF gets set; however this leads to hangs; apparently Microchip
// realized this and in later implementations of their tcp/ip stack they introduced
// a counter to avoid hangs; of course they didn't update the errata sheet
uint16_t count = 0;
while ((readRegByte(EIR) & (EIR_TXIF | EIR_TXERIF)) == 0 && ++count < 1000U)
;
if (!(readRegByte(EIR) & EIR_TXERIF) && count < 1000U) {
// no error; start new transmission
BREAKORCONTINUE
}
// cancel previous transmission if stuck
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRTS);
#if ETHERCARD_RETRY_LATECOLLISIONS == 0
BREAKORCONTINUE
#endif
// Check whether the chip thinks that a late collision occurred; the chip
// may be wrong (Errata Issue 13); therefore we retry. We could check
// LATECOL in the ESTAT register in order to find out whether the chip
// thinks a late collision occurred but (Errata Issue 15) tells us that
// this is not working. Therefore we check TSV
transmit_status_vector tsv;
uint16_t etxnd = readReg(ETXND);
writeReg(ERDPT, etxnd+1);
readBuf(sizeof(transmit_status_vector), (byte*) &tsv);
// LATECOL is bit number 29 in TSV (starting from 0)
if (!((readRegByte(EIR) & EIR_TXERIF) && (tsv.bytes[3] & 1<<5) /*tsv.transmitLateCollision*/) || retry > 16U) {
// there was some error but no LATECOL so we do not repeat
BREAKORCONTINUE
}
retry++;
}
}
uint16_t ENC28J60::packetReceive() {
static uint16_t gNextPacketPtr = RXSTART_INIT;
static bool unreleasedPacket = false;
uint16_t len = 0;
if (unreleasedPacket) {
if (gNextPacketPtr == 0)
writeReg(ERXRDPT, RXSTOP_INIT);
else
writeReg(ERXRDPT, gNextPacketPtr - 1);
unreleasedPacket = false;
}
if (readRegByte(EPKTCNT) > 0) {
writeReg(ERDPT, gNextPacketPtr);
struct {
uint16_t nextPacket;
uint16_t byteCount;
uint16_t status;
} header;
readBuf(sizeof header, (byte*) &header);
gNextPacketPtr = header.nextPacket;
len = header.byteCount - 4; //remove the CRC count
if (len>bufferSize) len=0; // discard messages too long **NMCK**
if ((header.status & 0x80)==0)
len = 0;
else
readBuf(len, buffer);
unreleasedPacket = true;
writeOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);
}
return len;
}
// Contributed by Alex M. Based on code from: http://blog.derouineau.fr
// /2011/07/putting-enc28j60-ethernet-controler-in-sleep-mode/
void ENC28J60::powerDown() {
writeOp(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_RXEN);
while(readRegByte(ESTAT) & ESTAT_RXBUSY);
while(readRegByte(ECON1) & ECON1_TXRTS);
writeOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_VRPS);
writeOp(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PWRSV);
}
void ENC28J60::powerUp() {
writeOp(ENC28J60_BIT_FIELD_CLR, ECON2, ECON2_PWRSV);
while(!readRegByte(ESTAT) & ESTAT_CLKRDY);
writeOp(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_RXEN);
}
void ENC28J60::enableBroadcast (bool temporary) {
writeRegByte(ERXFCON, readRegByte(ERXFCON) | ERXFCON_BCEN);
if(!temporary)
broadcast_enabled = true;
}
void ENC28J60::disableBroadcast (bool temporary) {
if(!temporary)
broadcast_enabled = false;
if(!broadcast_enabled)
writeRegByte(ERXFCON, readRegByte(ERXFCON) & ~ERXFCON_BCEN);
}
void ENC28J60::enableMulticast () {
writeRegByte(ERXFCON, readRegByte(ERXFCON) | ERXFCON_MCEN);
}
void ENC28J60::disableMulticast () {
writeRegByte(ERXFCON, readRegByte(ERXFCON) & ~ERXFCON_MCEN);
}
void ENC28J60::enablePromiscuous (bool temporary) {
writeRegByte(ERXFCON, readRegByte(ERXFCON) & ERXFCON_CRCEN);
if(!temporary)
promiscuous_enabled = true;
}
void ENC28J60::disablePromiscuous (bool temporary) {
if(!temporary)
promiscuous_enabled = false;
if(!promiscuous_enabled) {
writeRegByte(ERXFCON, ERXFCON_UCEN|ERXFCON_CRCEN|ERXFCON_PMEN|ERXFCON_BCEN);
}
}