1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-23 08:06:13 +01:00
CommandStation-EX/DCCEXParser.cpp
Neil McKechnie 9dacd24d27
Various HAL enhancements. (#182)
* Add <D SERVO vpin position> command

Allow a PWM servo to be driven to any arbitrary position.

* Enhancements for HAL drivers

Add state change notification for external GPIO module drivers;
Allow drivers to be installed statically by declaration (as an alternative to the 'create' call).

* Create IO_HCSR04.h

HAL driver for HC-SR04 ultrasonic distance sensor (sonar).

* Enable servo commands in NO-HAL mode, but return error.

Avoid compile errors in RMFT.cpp when compiled with basic HAL by including the Turnout::createServo function as a stub that returns NULL.

* Update IO_HCSR04.h

Minor changes

* Change <D SERVO>

Give the <D SERVO> command an optional parameter of the profile.  For example, <D SERVO 100 200 3> will slowly move the servo on pin 100 to PWM position corresponding to 200.  If omitted, the servo will move immediately (no animation).

* IODevice (HAL) changes

1) Put new devices on the end of the chain instead of the beginning.  This will give better performance for devices created first (ArduinoPins and extender GPIO devices, typically).
2) Remove unused functions.

* Update IO_HCSR04.h

Allow thresholds for ON and OFF to be separately configured at creation.

* Update IODevice.cpp

Fix compile error on IO_NO_HAL minimal HAL version.

* Update IO_PCA9685.cpp

Remove unnecessary duplicated call to min() function.
2021-08-17 23:41:34 +01:00

882 lines
28 KiB
C++

/*
* © 2020, Chris Harlow. All rights reserved.
* © 2020, Harald Barth.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include "StringFormatter.h"
#include "DCCEXParser.h"
#include "DCC.h"
#include "DCCWaveform.h"
#include "Turnouts.h"
#include "Outputs.h"
#include "Sensors.h"
#include "freeMemory.h"
#include "GITHUB_SHA.h"
#include "version.h"
#include "EEStore.h"
#include "DIAG.h"
#include <avr/wdt.h>
// These keywords are used in the <1> command. The number is what you get if you use the keyword as a parameter.
// To discover new keyword numbers , use the <$ YOURKEYWORD> command
const int16_t HASH_KEYWORD_PROG = -29718;
const int16_t HASH_KEYWORD_MAIN = 11339;
const int16_t HASH_KEYWORD_JOIN = -30750;
const int16_t HASH_KEYWORD_CABS = -11981;
const int16_t HASH_KEYWORD_RAM = 25982;
const int16_t HASH_KEYWORD_CMD = 9962;
const int16_t HASH_KEYWORD_WIT = 31594;
const int16_t HASH_KEYWORD_WIFI = -5583;
const int16_t HASH_KEYWORD_ACK = 3113;
const int16_t HASH_KEYWORD_ON = 2657;
const int16_t HASH_KEYWORD_DCC = 6436;
const int16_t HASH_KEYWORD_SLOW = -17209;
const int16_t HASH_KEYWORD_PROGBOOST = -6353;
const int16_t HASH_KEYWORD_EEPROM = -7168;
const int16_t HASH_KEYWORD_LIMIT = 27413;
const int16_t HASH_KEYWORD_ETHERNET = -30767;
const int16_t HASH_KEYWORD_MAX = 16244;
const int16_t HASH_KEYWORD_MIN = 15978;
const int16_t HASH_KEYWORD_LCN = 15137;
const int16_t HASH_KEYWORD_RESET = 26133;
const int16_t HASH_KEYWORD_SPEED28 = -17064;
const int16_t HASH_KEYWORD_SPEED128 = 25816;
const int16_t HASH_KEYWORD_SERVO = 27709;
int16_t DCCEXParser::stashP[MAX_COMMAND_PARAMS];
bool DCCEXParser::stashBusy;
Print *DCCEXParser::stashStream = NULL;
RingStream *DCCEXParser::stashRingStream = NULL;
byte DCCEXParser::stashTarget=0;
// This is a JMRI command parser, one instance per incoming stream
// It doesnt know how the string got here, nor how it gets back.
// It knows nothing about hardware or tracks... it just parses strings and
// calls the corresponding DCC api.
// Non-DCC things like turnouts, pins and sensors are handled in additional JMRI interface classes.
DCCEXParser::DCCEXParser() {}
void DCCEXParser::flush()
{
if (Diag::CMD)
DIAG(F("Buffer flush"));
bufferLength = 0;
inCommandPayload = false;
}
void DCCEXParser::loop(Stream &stream)
{
while (stream.available())
{
if (bufferLength == MAX_BUFFER)
{
flush();
}
char ch = stream.read();
if (ch == '<')
{
inCommandPayload = true;
bufferLength = 0;
buffer[0] = '\0';
}
else if (ch == '>')
{
buffer[bufferLength] = '\0';
parse(&stream, buffer, NULL); // Parse this (No ringStream for serial)
inCommandPayload = false;
break;
}
else if (inCommandPayload)
{
buffer[bufferLength++] = ch;
}
}
Sensor::checkAll(&stream); // Update and print changes
}
int16_t DCCEXParser::splitValues(int16_t result[MAX_COMMAND_PARAMS], const byte *cmd)
{
byte state = 1;
byte parameterCount = 0;
int16_t runningValue = 0;
const byte *remainingCmd = cmd + 1; // skips the opcode
bool signNegative = false;
// clear all parameters in case not enough found
for (int16_t i = 0; i < MAX_COMMAND_PARAMS; i++)
result[i] = 0;
while (parameterCount < MAX_COMMAND_PARAMS)
{
byte hot = *remainingCmd;
switch (state)
{
case 1: // skipping spaces before a param
if (hot == ' ')
break;
if (hot == '\0' || hot == '>')
return parameterCount;
state = 2;
continue;
case 2: // checking sign
signNegative = false;
runningValue = 0;
state = 3;
if (hot != '-')
continue;
signNegative = true;
break;
case 3: // building a parameter
if (hot >= '0' && hot <= '9')
{
runningValue = 10 * runningValue + (hot - '0');
break;
}
if (hot >= 'a' && hot <= 'z') hot=hot-'a'+'A'; // uppercase a..z
if (hot >= 'A' && hot <= 'Z')
{
// Since JMRI got modified to send keywords in some rare cases, we need this
// Super Kluge to turn keywords into a hash value that can be recognised later
runningValue = ((runningValue << 5) + runningValue) ^ hot;
break;
}
result[parameterCount] = runningValue * (signNegative ? -1 : 1);
parameterCount++;
state = 1;
continue;
}
remainingCmd++;
}
return parameterCount;
}
int16_t DCCEXParser::splitHexValues(int16_t result[MAX_COMMAND_PARAMS], const byte *cmd)
{
byte state = 1;
byte parameterCount = 0;
int16_t runningValue = 0;
const byte *remainingCmd = cmd + 1; // skips the opcode
// clear all parameters in case not enough found
for (int16_t i = 0; i < MAX_COMMAND_PARAMS; i++)
result[i] = 0;
while (parameterCount < MAX_COMMAND_PARAMS)
{
byte hot = *remainingCmd;
switch (state)
{
case 1: // skipping spaces before a param
if (hot == ' ')
break;
if (hot == '\0' || hot == '>')
return parameterCount;
state = 2;
continue;
case 2: // checking first hex digit
runningValue = 0;
state = 3;
continue;
case 3: // building a parameter
if (hot >= '0' && hot <= '9')
{
runningValue = 16 * runningValue + (hot - '0');
break;
}
if (hot >= 'A' && hot <= 'F')
{
runningValue = 16 * runningValue + 10 + (hot - 'A');
break;
}
if (hot >= 'a' && hot <= 'f')
{
runningValue = 16 * runningValue + 10 + (hot - 'a');
break;
}
if (hot==' ' || hot=='>' || hot=='\0') {
result[parameterCount] = runningValue;
parameterCount++;
state = 1;
continue;
}
return -1; // invalid hex digit
}
remainingCmd++;
}
return parameterCount;
}
FILTER_CALLBACK DCCEXParser::filterCallback = 0;
FILTER_CALLBACK DCCEXParser::filterRMFTCallback = 0;
AT_COMMAND_CALLBACK DCCEXParser::atCommandCallback = 0;
void DCCEXParser::setFilter(FILTER_CALLBACK filter)
{
filterCallback = filter;
}
void DCCEXParser::setRMFTFilter(FILTER_CALLBACK filter)
{
filterRMFTCallback = filter;
}
void DCCEXParser::setAtCommandCallback(AT_COMMAND_CALLBACK callback)
{
atCommandCallback = callback;
}
// Parse an F() string
void DCCEXParser::parse(const FSH * cmd) {
int size=strlen_P((char *)cmd)+1;
char buffer[size];
strcpy_P(buffer,(char *)cmd);
parse(&Serial,(byte *)buffer,NULL);
}
// See documentation on DCC class for info on this section
void DCCEXParser::parse(Print *stream, byte *com, RingStream * ringStream)
{
(void)EEPROM; // tell compiler not to warn this is unused
if (Diag::CMD)
DIAG(F("PARSING:%s"), com);
int16_t p[MAX_COMMAND_PARAMS];
while (com[0] == '<' || com[0] == ' ')
com++; // strip off any number of < or spaces
byte params = splitValues(p, com);
byte opcode = com[0];
if (filterCallback)
filterCallback(stream, opcode, params, p);
if (filterRMFTCallback && opcode!='\0')
filterRMFTCallback(stream, opcode, params, p);
// Functions return from this switch if complete, break from switch implies error <X> to send
switch (opcode)
{
case '\0':
return; // filterCallback asked us to ignore
case 't': // THROTTLE <t [REGISTER] CAB SPEED DIRECTION>
{
int16_t cab;
int16_t tspeed;
int16_t direction;
if (params == 4)
{ // <t REGISTER CAB SPEED DIRECTION>
cab = p[1];
tspeed = p[2];
direction = p[3];
}
else if (params == 3)
{ // <t CAB SPEED DIRECTION>
cab = p[0];
tspeed = p[1];
direction = p[2];
}
else
break;
// Convert DCC-EX protocol speed steps where
// -1=emergency stop, 0-126 as speeds
// to DCC 0=stop, 1= emergency stop, 2-127 speeds
if (tspeed > 126 || tspeed < -1)
break; // invalid JMRI speed code
if (tspeed < 0)
tspeed = 1; // emergency stop DCC speed
else if (tspeed > 0)
tspeed++; // map 1-126 -> 2-127
if (cab == 0 && tspeed > 1)
break; // ignore broadcasts of speed>1
if (direction < 0 || direction > 1)
break; // invalid direction code
DCC::setThrottle(cab, tspeed, direction);
if (params == 4)
StringFormatter::send(stream, F("<T %d %d %d>\n"), p[0], p[2], p[3]);
else
StringFormatter::send(stream, F("<O>\n"));
return;
}
case 'f': // FUNCTION <f CAB BYTE1 [BYTE2]>
if (parsef(stream, params, p))
return;
break;
case 'a': // ACCESSORY <a ADDRESS SUBADDRESS ACTIVATE> or <a LINEARADDRESS ACTIVATE>
{
int address;
byte subaddress;
byte activep;
if (params==2) { // <a LINEARADDRESS ACTIVATE>
address=(p[0] - 1) / 4 + 1;
subaddress=(p[0] - 1) % 4;
activep=1;
}
else if (params==3) { // <a ADDRESS SUBADDRESS ACTIVATE>
address=p[0];
subaddress=p[1];
activep=2;
}
else break; // invalid no of parameters
if (
((address & 0x01FF) != address) // invalid address (limit 9 bits )
|| ((subaddress & 0x03) != subaddress) // invalid subaddress (limit 2 bits )
|| ((p[activep] & 0x01) != p[activep]) // invalid activate 0|1
) break;
// TODO: Trigger configurable range of addresses on local VPins.
DCC::setAccessory(address, subaddress,p[activep]==1);
}
return;
case 'T': // TURNOUT <T ...>
if (parseT(stream, params, p))
return;
break;
case 'Z': // OUTPUT <Z ...>
if (parseZ(stream, params, p))
return;
break;
case 'S': // SENSOR <S ...>
if (parseS(stream, params, p))
return;
break;
case 'w': // WRITE CV on MAIN <w CAB CV VALUE>
DCC::writeCVByteMain(p[0], p[1], p[2]);
return;
case 'b': // WRITE CV BIT ON MAIN <b CAB CV BIT VALUE>
DCC::writeCVBitMain(p[0], p[1], p[2], p[3]);
return;
case 'M': // WRITE TRANSPARENT DCC PACKET MAIN <M REG X1 ... X9>
case 'P': // WRITE TRANSPARENT DCC PACKET PROG <P REG X1 ... X9>
// Re-parse the command using a hex-only splitter
params=splitHexValues(p,com)-1; // drop REG
if (params<1) break;
{
byte packet[params];
for (int i=0;i<params;i++) {
packet[i]=(byte)p[i+1];
if (Diag::CMD) DIAG(F("packet[%d]=%d (0x%x)"), i, packet[i], packet[i]);
}
(opcode=='M'?DCCWaveform::mainTrack:DCCWaveform::progTrack).schedulePacket(packet,params,3);
}
return;
case 'W': // WRITE CV ON PROG <W CV VALUE CALLBACKNUM CALLBACKSUB>
if (!stashCallback(stream, p, ringStream))
break;
if (params == 1) // <W id> Write new loco id (clearing consist and managing short/long)
DCC::setLocoId(p[0],callback_Wloco);
else // WRITE CV ON PROG <W CV VALUE [CALLBACKNUM] [CALLBACKSUB]>
DCC::writeCVByte(p[0], p[1], callback_W);
return;
case 'V': // VERIFY CV ON PROG <V CV VALUE> <V CV BIT 0|1>
if (params == 2)
{ // <V CV VALUE>
if (!stashCallback(stream, p, ringStream))
break;
DCC::verifyCVByte(p[0], p[1], callback_Vbyte);
return;
}
if (params == 3)
{
if (!stashCallback(stream, p, ringStream))
break;
DCC::verifyCVBit(p[0], p[1], p[2], callback_Vbit);
return;
}
break;
case 'B': // WRITE CV BIT ON PROG <B CV BIT VALUE CALLBACKNUM CALLBACKSUB>
if (!stashCallback(stream, p, ringStream))
break;
DCC::writeCVBit(p[0], p[1], p[2], callback_B);
return;
case 'R': // READ CV ON PROG
if (params == 3)
{ // <R CV CALLBACKNUM CALLBACKSUB>
if (!stashCallback(stream, p, ringStream))
break;
DCC::readCV(p[0], callback_R);
return;
}
if (params == 0)
{ // <R> New read loco id
if (!stashCallback(stream, p, ringStream))
break;
DCC::getLocoId(callback_Rloco);
return;
}
break;
case '1': // POWERON <1 [MAIN|PROG]>
case '0': // POWEROFF <0 [MAIN | PROG] >
if (params > 1)
break;
{
POWERMODE mode = opcode == '1' ? POWERMODE::ON : POWERMODE::OFF;
DCC::setProgTrackSyncMain(false); // Only <1 JOIN> will set this on, all others set it off
if (params == 0 ||
(MotorDriver::commonFaultPin && p[0] != HASH_KEYWORD_JOIN)) // commonFaultPin prevents individual track handling
{
DCCWaveform::mainTrack.setPowerMode(mode);
DCCWaveform::progTrack.setPowerMode(mode);
if (mode == POWERMODE::OFF)
DCC::setProgTrackBoost(false); // Prog track boost mode will not outlive prog track off
StringFormatter::send(stream, F("<p%c>\n"), opcode);
return;
}
switch (p[0])
{
case HASH_KEYWORD_MAIN:
DCCWaveform::mainTrack.setPowerMode(mode);
StringFormatter::send(stream, F("<p%c MAIN>\n"), opcode);
return;
case HASH_KEYWORD_PROG:
DCCWaveform::progTrack.setPowerMode(mode);
if (mode == POWERMODE::OFF)
DCC::setProgTrackBoost(false); // Prog track boost mode will not outlive prog track off
StringFormatter::send(stream, F("<p%c PROG>\n"), opcode);
return;
case HASH_KEYWORD_JOIN:
DCCWaveform::mainTrack.setPowerMode(mode);
DCCWaveform::progTrack.setPowerMode(mode);
if (mode == POWERMODE::ON)
{
DCC::setProgTrackSyncMain(true);
StringFormatter::send(stream, F("<p1 JOIN>\n"), opcode);
}
else
StringFormatter::send(stream, F("<p0>\n"));
return;
}
break;
}
return;
case '!': // ESTOP ALL <!>
DCC::setThrottle(0,1,1); // this broadcasts speed 1(estop) and sets all reminders to speed 1.
return;
case 'c': // SEND METER RESPONSES <c>
// <c MeterName value C/V unit min max res warn>
StringFormatter::send(stream, F("<c CurrentMAIN %d C Milli 0 %d 1 %d>\n"), DCCWaveform::mainTrack.getCurrentmA(),
DCCWaveform::mainTrack.getMaxmA(), DCCWaveform::mainTrack.getTripmA());
StringFormatter::send(stream, F("<a %d>\n"), DCCWaveform::mainTrack.get1024Current()); //'a' message deprecated, remove once JMRI 4.22 is available
return;
case 'Q': // SENSORS <Q>
Sensor::printAll(stream);
return;
case 's': // <s>
StringFormatter::send(stream, F("<p%d>\n"), DCCWaveform::mainTrack.getPowerMode() == POWERMODE::ON);
StringFormatter::send(stream, F("<iDCC-EX V-%S / %S / %S G-%S>\n"), F(VERSION), F(ARDUINO_TYPE), DCC::getMotorShieldName(), F(GITHUB_SHA));
Turnout::printAll(stream); //send all Turnout states
Output::printAll(stream); //send all Output states
Sensor::printAll(stream); //send all Sensor states
// TODO Send stats of speed reminders table
return;
case 'E': // STORE EPROM <E>
EEStore::store();
StringFormatter::send(stream, F("<e %d %d %d>\n"), EEStore::eeStore->data.nTurnouts, EEStore::eeStore->data.nSensors, EEStore::eeStore->data.nOutputs);
return;
case 'e': // CLEAR EPROM <e>
EEStore::clear();
StringFormatter::send(stream, F("<O>\n"));
return;
case ' ': // < >
StringFormatter::send(stream, F("\n"));
return;
case 'D': // < >
if (parseD(stream, params, p))
return;
return;
case '#': // NUMBER OF LOCOSLOTS <#>
StringFormatter::send(stream, F("<# %d>\n"), MAX_LOCOS);
return;
case '-': // Forget Loco <- [cab]>
if (params > 1 || p[0]<0) break;
if (p[0]==0) DCC::forgetAllLocos();
else DCC::forgetLoco(p[0]);
return;
case 'F': // New command to call the new Loco Function API <F cab func 1|0>
if (Diag::CMD)
DIAG(F("Setting loco %d F%d %S"), p[0], p[1], p[2] ? F("ON") : F("OFF"));
DCC::setFn(p[0], p[1], p[2] == 1);
return;
case '+': // Complex Wifi interface command (not usual parse)
if (atCommandCallback) {
DCCWaveform::mainTrack.setPowerMode(POWERMODE::OFF);
DCCWaveform::progTrack.setPowerMode(POWERMODE::OFF);
atCommandCallback(com);
return;
}
break;
default: //anything else will diagnose and drop out to <X>
DIAG(F("Opcode=%c params=%d"), opcode, params);
for (int i = 0; i < params; i++)
DIAG(F("p[%d]=%d (0x%x)"), i, p[i], p[i]);
break;
} // end of opcode switch
// Any fallout here sends an <X>
StringFormatter::send(stream, F("<X>\n"));
}
bool DCCEXParser::parseZ(Print *stream, int16_t params, int16_t p[])
{
switch (params)
{
case 2: // <Z ID ACTIVATE>
{
Output *o = Output::get(p[0]);
if (o == NULL)
return false;
o->activate(p[1]);
StringFormatter::send(stream, F("<Y %d %d>\n"), p[0], p[1]);
}
return true;
case 3: // <Z ID PIN IFLAG>
if (p[0] < 0 || p[2] < 0 || p[2] > 7 )
return false;
if (!Output::create(p[0], p[1], p[2], 1))
return false;
StringFormatter::send(stream, F("<O>\n"));
return true;
case 1: // <Z ID>
if (!Output::remove(p[0]))
return false;
StringFormatter::send(stream, F("<O>\n"));
return true;
case 0: // <Z> list Output definitions
{
bool gotone = false;
for (Output *tt = Output::firstOutput; tt != NULL; tt = tt->nextOutput)
{
gotone = true;
StringFormatter::send(stream, F("<Y %d %d %d %d>\n"), tt->data.id, tt->data.pin, tt->data.flags, tt->data.active);
}
return gotone;
}
default:
return false;
}
}
//===================================
bool DCCEXParser::parsef(Print *stream, int16_t params, int16_t p[])
{
// JMRI sends this info in DCC message format but it's not exactly
// convenient for other processing
if (params == 2)
{
byte instructionField = p[1] & 0xE0; // 1110 0000
if (instructionField == 0x80) // 1000 0000 Function group 1
{
// Shuffle bits from order F0 F4 F3 F2 F1 to F4 F3 F2 F1 F0
byte normalized = (p[1] << 1 & 0x1e) | (p[1] >> 4 & 0x01);
funcmap(p[0], normalized, 0, 4);
}
else if (instructionField == 0xA0) // 1010 0000 Function group 2
{
if (p[1] & 0x10) // 0001 0000 Bit selects F5toF8 / F9toF12
funcmap(p[0], p[1], 5, 8);
else
funcmap(p[0], p[1], 9, 12);
}
}
if (params == 3)
{
if (p[1] == 222)
funcmap(p[0], p[2], 13, 20);
else if (p[1] == 223)
funcmap(p[0], p[2], 21, 28);
}
(void)stream; // NO RESPONSE
return true;
}
void DCCEXParser::funcmap(int16_t cab, byte value, byte fstart, byte fstop)
{
for (int16_t i = fstart; i <= fstop; i++)
{
DCC::setFn(cab, i, value & 1);
value >>= 1;
}
}
//===================================
bool DCCEXParser::parseT(Print *stream, int16_t params, int16_t p[])
{
switch (params)
{
case 0: // <T> list turnout definitions
{
bool gotOne = false;
for (Turnout *tt = Turnout::firstTurnout; tt != NULL; tt = tt->nextTurnout)
{
gotOne = true;
tt->print(stream);
}
return gotOne; // will <X> if none found
}
case 1: // <T id> delete turnout
if (!Turnout::remove(p[0]))
return false;
StringFormatter::send(stream, F("<O>\n"));
return true;
case 2: // <T id 0|1> activate turnout
{
Turnout *tt = Turnout::get(p[0]);
if (!tt)
return false;
tt->activate(p[1]);
StringFormatter::send(stream, F("<H %d %d>\n"), p[0], tt->data.active);
}
return true;
default: // Anything else is handled by Turnout class.
if (!Turnout::create(p[0], params-1, &p[1]))
return false;
StringFormatter::send(stream, F("<O>\n"));
return true;
}
}
bool DCCEXParser::parseS(Print *stream, int16_t params, int16_t p[])
{
switch (params)
{
case 3: // <S id pin pullup> create sensor. pullUp indicator (0=LOW/1=HIGH)
if (!Sensor::create(p[0], p[1], p[2]))
return false;
StringFormatter::send(stream, F("<O>\n"));
return true;
case 1: // S id> remove sensor
if (!Sensor::remove(p[0]))
return false;
StringFormatter::send(stream, F("<O>\n"));
return true;
case 0: // <S> list sensor definitions
if (Sensor::firstSensor == NULL)
return false;
for (Sensor *tt = Sensor::firstSensor; tt != NULL; tt = tt->nextSensor)
{
StringFormatter::send(stream, F("<Q %d %d %d>\n"), tt->data.snum, tt->data.pin, tt->data.pullUp);
}
return true;
default: // invalid number of arguments
break;
}
return false;
}
bool DCCEXParser::parseD(Print *stream, int16_t params, int16_t p[])
{
if (params == 0)
return false;
bool onOff = (params > 0) && (p[1] == 1 || p[1] == HASH_KEYWORD_ON); // dont care if other stuff or missing... just means off
switch (p[0])
{
case HASH_KEYWORD_CABS: // <D CABS>
DCC::displayCabList(stream);
return true;
case HASH_KEYWORD_RAM: // <D RAM>
StringFormatter::send(stream, F("Free memory=%d\n"), minimumFreeMemory());
break;
case HASH_KEYWORD_ACK: // <D ACK ON/OFF> <D ACK [LIMIT|MIN|MAX] Value>
if (params >= 3) {
if (p[1] == HASH_KEYWORD_LIMIT) {
DCCWaveform::progTrack.setAckLimit(p[2]);
StringFormatter::send(stream, F("Ack limit=%dmA\n"), p[2]);
} else if (p[1] == HASH_KEYWORD_MIN) {
DCCWaveform::progTrack.setMinAckPulseDuration(p[2]);
StringFormatter::send(stream, F("Ack min=%dus\n"), p[2]);
} else if (p[1] == HASH_KEYWORD_MAX) {
DCCWaveform::progTrack.setMaxAckPulseDuration(p[2]);
StringFormatter::send(stream, F("Ack max=%dus\n"), p[2]);
}
} else {
StringFormatter::send(stream, F("Ack diag %S\n"), onOff ? F("on") : F("off"));
Diag::ACK = onOff;
}
return true;
case HASH_KEYWORD_CMD: // <D CMD ON/OFF>
Diag::CMD = onOff;
return true;
case HASH_KEYWORD_WIFI: // <D WIFI ON/OFF>
Diag::WIFI = onOff;
return true;
case HASH_KEYWORD_ETHERNET: // <D ETHERNET ON/OFF>
Diag::ETHERNET = onOff;
return true;
case HASH_KEYWORD_WIT: // <D WIT ON/OFF>
Diag::WITHROTTLE = onOff;
return true;
case HASH_KEYWORD_LCN: // <D LCN ON/OFF>
Diag::LCN = onOff;
return true;
case HASH_KEYWORD_PROGBOOST:
DCC::setProgTrackBoost(true);
return true;
case HASH_KEYWORD_RESET:
{
wdt_enable( WDTO_15MS); // set Arduino watchdog timer for 15ms
delay(50); // wait for the prescaller time to expire
break; // and <X> if we didnt restart
}
case HASH_KEYWORD_EEPROM: // <D EEPROM NumEntries>
if (params >= 2)
EEStore::dump(p[1]);
return true;
case HASH_KEYWORD_SPEED28:
DCC::setGlobalSpeedsteps(28);
StringFormatter::send(stream, F("28 Speedsteps"));
return true;
case HASH_KEYWORD_SPEED128:
DCC::setGlobalSpeedsteps(128);
StringFormatter::send(stream, F("128 Speedsteps"));
return true;
case HASH_KEYWORD_SERVO:
IODevice::writeAnalogue(p[1], p[2], params>3 ? p[3] : 0);
break;
default: // invalid/unknown
break;
}
return false;
}
// CALLBACKS must be static
bool DCCEXParser::stashCallback(Print *stream, int16_t p[MAX_COMMAND_PARAMS], RingStream * ringStream)
{
if (stashBusy )
return false;
stashBusy = true;
stashStream = stream;
stashRingStream=ringStream;
if (ringStream) stashTarget= ringStream->peekTargetMark();
memcpy(stashP, p, MAX_COMMAND_PARAMS * sizeof(p[0]));
return true;
}
Print * DCCEXParser::getAsyncReplyStream() {
if (stashRingStream) {
stashRingStream->mark(stashTarget);
return stashRingStream;
}
return stashStream;
}
void DCCEXParser::commitAsyncReplyStream() {
if (stashRingStream) stashRingStream->commit();
stashBusy = false;
}
void DCCEXParser::callback_W(int16_t result)
{
StringFormatter::send(getAsyncReplyStream(),
F("<r%d|%d|%d %d>\n"), stashP[2], stashP[3], stashP[0], result == 1 ? stashP[1] : -1);
commitAsyncReplyStream();
}
void DCCEXParser::callback_B(int16_t result)
{
StringFormatter::send(getAsyncReplyStream(),
F("<r%d|%d|%d %d %d>\n"), stashP[3], stashP[4], stashP[0], stashP[1], result == 1 ? stashP[2] : -1);
commitAsyncReplyStream();
}
void DCCEXParser::callback_Vbit(int16_t result)
{
StringFormatter::send(getAsyncReplyStream(), F("<v %d %d %d>\n"), stashP[0], stashP[1], result);
commitAsyncReplyStream();
}
void DCCEXParser::callback_Vbyte(int16_t result)
{
StringFormatter::send(getAsyncReplyStream(), F("<v %d %d>\n"), stashP[0], result);
commitAsyncReplyStream();
}
void DCCEXParser::callback_R(int16_t result)
{
StringFormatter::send(getAsyncReplyStream(), F("<r%d|%d|%d %d>\n"), stashP[1], stashP[2], stashP[0], result);
commitAsyncReplyStream();
}
void DCCEXParser::callback_Rloco(int16_t result)
{
StringFormatter::send(getAsyncReplyStream(), F("<r %d>\n"), result);
commitAsyncReplyStream();
}
void DCCEXParser::callback_Wloco(int16_t result)
{
if (result==1) result=stashP[0]; // pick up original requested id from command
StringFormatter::send(getAsyncReplyStream(), F("<w %d>\n"), result);
commitAsyncReplyStream();
}