1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-23 08:06:13 +01:00
CommandStation-EX/MotorDriver.cpp
2022-05-10 23:42:21 +02:00

265 lines
8.6 KiB
C++

/*
* © 2021 Mike S
* © 2021 Fred Decker
* © 2020-2022 Harald Barth
* © 2020-2021 Chris Harlow
* All rights reserved.
*
* This file is part of CommandStation-EX
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
*/
#include <Arduino.h>
#include "MotorDriver.h"
#include "DCCTimer.h"
#include "DIAG.h"
bool MotorDriver::usePWM=false;
bool MotorDriver::commonFaultPin=false;
volatile byte fakePORTA;
volatile byte fakePORTB;
volatile byte fakePORTC;
MotorDriver::MotorDriver(VPIN power_pin, byte signal_pin, byte signal_pin2, int8_t brake_pin,
byte current_pin, float sense_factor, unsigned int trip_milliamps, byte fault_pin) {
powerPin=power_pin;
IODevice::write(powerPin,LOW);// set to OUTPUT and off
signalPin=signal_pin;
getFastPin(F("SIG"),signalPin,fastSignalPin);
pinMode(signalPin, OUTPUT);
if (fastSignalPin.inout == &PORTA) {
DIAG(F("Found PORTA pin %d"),signalPin);
fastSignalPin.inout = &fakePORTA;
}
if (fastSignalPin.inout == &PORTB) {
DIAG(F("Found PORTB pin %d"),signalPin);
fastSignalPin.inout = &fakePORTB;
}
if (fastSignalPin.inout == &PORTC) {
DIAG(F("Found PORTC pin %d"),signalPin);
fastSignalPin.inout = &fakePORTC;
}
signalPin2=signal_pin2;
if (signalPin2!=UNUSED_PIN) {
dualSignal=true;
getFastPin(F("SIG2"),signalPin2,fastSignalPin2);
pinMode(signalPin2, OUTPUT);
}
else dualSignal=false;
brakePin=brake_pin;
if (brake_pin!=UNUSED_PIN){
invertBrake=brake_pin < 0;
brakePin=invertBrake ? 0-brake_pin : brake_pin;
getFastPin(F("BRAKE"),brakePin,fastBrakePin);
// if brake is used for railcom cutout we need to do PORTX register trick here as well
pinMode(brakePin, OUTPUT);
setBrake(true); // start with brake on in case we hace DC stuff going on
}
else brakePin=UNUSED_PIN;
currentPin=current_pin;
if (currentPin!=UNUSED_PIN) {
pinMode(currentPin, INPUT);
senseOffset=analogRead(currentPin); // value of sensor at zero current
}
faultPin=fault_pin;
if (faultPin != UNUSED_PIN) {
getFastPin(F("FAULT"),faultPin, 1 /*input*/, fastFaultPin);
pinMode(faultPin, INPUT);
}
senseFactor=sense_factor;
tripMilliamps=trip_milliamps;
rawCurrentTripValue=(int)(trip_milliamps / sense_factor);
if (currentPin==UNUSED_PIN)
DIAG(F("MotorDriver ** WARNING ** No current or short detection"));
else
DIAG(F("MotorDriver currentPin=A%d, senseOffset=%d, rawCurrentTripValue(relative to offset)=%d"),
currentPin-A0, senseOffset,rawCurrentTripValue);
// prepare values for current detection
sampleDelay = 0;
lastSampleTaken = millis();
progTripValue = mA2raw(TRIP_CURRENT_PROG);
}
bool MotorDriver::isPWMCapable() {
return (!dualSignal) && DCCTimer::isPWMPin(signalPin);
}
void MotorDriver::setPower(POWERMODE mode) {
bool on=mode==POWERMODE::ON;
if (on) {
IODevice::write(powerPin,HIGH);
if (resetsCounterP != NULL)
*resetsCounterP = 0;
}
else IODevice::write(powerPin,LOW);
powerMode=mode;
}
// setBrake applies brake if on == true. So to get
// voltage from the motor bride one needs to do a
// setBrake(false).
// If the brakePin is negative that means the sense
// of the brake pin on the motor bridge is inverted
// (HIGH == release brake) and setBrake does
// compensate for that.
//
void MotorDriver::setBrake(bool on) {
if (brakePin == UNUSED_PIN) return;
if (on ^ invertBrake) setHIGH(fastBrakePin);
else setLOW(fastBrakePin);
}
bool MotorDriver::canMeasureCurrent() {
return currentPin!=UNUSED_PIN;
}
/*
* Return the current reading as pin reading 0 to 1023. If the fault
* pin is activated return a negative current to show active fault pin.
* As there is no -0, create a little and return -1 in that case.
*
* senseOffset handles the case where a shield returns values above or below
* a central value depending on direction.
*/
int MotorDriver::getCurrentRaw() {
if (currentPin==UNUSED_PIN) return 0;
int current;
// This function should NOT be called in an interruot so we
// dont need to fart about saving and restoring CPU specific
// interrupt registers.
noInterrupts();
current = analogRead(currentPin)-senseOffset;
interrupts();
if (current<0) current=0-current;
if ((faultPin != UNUSED_PIN) && isLOW(fastFaultPin) && powerMode==POWERMODE::ON)
return (current == 0 ? -1 : -current);
return current;
}
void MotorDriver::setDCSignal(byte speedcode) {
// spedcoode is a dcc speed /direction
byte tSpeed=speedcode & 0x7F;
// DCC Speed with 0,1 stop and speed steps 2 to 127
byte brake;
if (tSpeed <= 1) brake = 255;
else if (tSpeed >= 127) brake = 0;
else brake = 2 * (128-tSpeed);
analogWrite(brakePin,brake);
setSignal(speedcode & 0x80);
}
int MotorDriver::getCurrentRawInInterrupt() {
// IMPORTANT: This function must be called in Interrupt() time within the 56uS timer
// The default analogRead takes ~100uS which is catastrphic
// so DCCTimer has set the sample time to be much faster.
if (currentPin==UNUSED_PIN) return 0;
return analogRead(currentPin)-senseOffset;
}
unsigned int MotorDriver::raw2mA( int raw) {
return (unsigned int)(raw * senseFactor);
}
int MotorDriver::mA2raw( unsigned int mA) {
return (int)(mA / senseFactor);
}
void MotorDriver::getFastPin(const FSH* type,int pin, bool input, FASTPIN & result) {
// DIAG(F("MotorDriver %S Pin=%d,"),type,pin);
(void) type; // avoid compiler warning if diag not used above.
uint8_t port = digitalPinToPort(pin);
if (input)
result.inout = portInputRegister(port);
else
result.inout = portOutputRegister(port);
result.maskHIGH = digitalPinToBitMask(pin);
result.maskLOW = ~result.maskHIGH;
// DIAG(F(" port=0x%x, inoutpin=0x%x, isinput=%d, mask=0x%x"),port, result.inout,input,result.maskHIGH);
}
void MotorDriver::checkPowerOverload(bool useProgLimit, byte trackno) {
if (millis() - lastSampleTaken < sampleDelay) return;
lastSampleTaken = millis();
int tripValue= useProgLimit?progTripValue:getRawCurrentTripValue();
// Trackname for diag messages later
switch (powerMode) {
case POWERMODE::OFF:
sampleDelay = POWER_SAMPLE_OFF_WAIT;
break;
case POWERMODE::ON:
// Check current
lastCurrent=getCurrentRaw();
if (lastCurrent < 0) {
// We have a fault pin condition to take care of
lastCurrent = -lastCurrent;
setPower(POWERMODE::OVERLOAD); // Turn off, decide later how fast to turn on again
if (commonFaultPin) {
if (lastCurrent <= tripValue) {
setPower(POWERMODE::ON); // maybe other track
}
// Write this after the fact as we want to turn on as fast as possible
// because we don't know which output actually triggered the fault pin
DIAG(F("COMMON FAULT PIN ACTIVE - TOGGLED POWER on %d"), trackno);
} else {
DIAG(F("TRACK %d FAULT PIN ACTIVE - OVERLOAD"), trackno);
if (lastCurrent < tripValue) {
lastCurrent = tripValue; // exaggerate
}
}
}
if (lastCurrent < tripValue) {
sampleDelay = POWER_SAMPLE_ON_WAIT;
if(power_good_counter<100)
power_good_counter++;
else
if (power_sample_overload_wait>POWER_SAMPLE_OVERLOAD_WAIT) power_sample_overload_wait=POWER_SAMPLE_OVERLOAD_WAIT;
} else {
setPower(POWERMODE::OVERLOAD);
unsigned int mA=raw2mA(lastCurrent);
unsigned int maxmA=raw2mA(tripValue);
power_good_counter=0;
sampleDelay = power_sample_overload_wait;
DIAG(F("TRACK %d POWER OVERLOAD current=%d max=%d offtime=%d"), trackno, mA, maxmA, sampleDelay);
if (power_sample_overload_wait >= 10000)
power_sample_overload_wait = 10000;
else
power_sample_overload_wait *= 2;
}
break;
case POWERMODE::OVERLOAD:
// Try setting it back on after the OVERLOAD_WAIT
setPower(POWERMODE::ON);
sampleDelay = POWER_SAMPLE_ON_WAIT;
// Debug code....
DIAG(F("TRACK %d POWER RESET delay=%d"), trackno, sampleDelay);
break;
default:
sampleDelay = 999; // cant get here..meaningless statement to avoid compiler warning.
}
}