1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2024-11-23 08:06:13 +01:00
CommandStation-EX/DCC.cpp
Asbelos d42589aff5 Loco reminders speedcode
Saves one byte per loco and avoids recalculating the speed message bits each time
2020-06-03 10:36:01 +01:00

227 lines
7.4 KiB
C++

#include "DCC.h"
#include "DCCWaveform.h"
#include "DIAG.h"
// This module is responsible for converting API calls into
// messages to be sent to the waveform generator.
// It has no visibility of the hardware, timers, interrupts
// nor of the waveform issues such as preambles, start bits checksums or cutouts.
//
// Nor should it have to deal with JMRI responsess other than the OK/FAIL
// or cv value returned. I will move that back to the JMRI interface later
//
// The interface to the waveform generator is narrowed down to merely:
// Scheduling a message on the prog or main track using a function
// Obtaining ACKs from the prog track using a function
// There are no volatiles here.
void DCC::begin() {
DCCWaveform::begin();
}
void DCC::setThrottle( uint16_t cab, uint8_t tSpeed, bool tDirection) {
byte speedCode= tSpeed + (tSpeed > 0) + tDirection * 128; // max speed is 126, but speed codes range from 2-127 (0=stop, 1=emergency stop)
setThrottle2(cab, speedCode);
// retain speed for loco reminders
updateLocoReminder(cab, speedCode );
}
void DCC::setThrottle2( uint16_t cab, byte speedCode) {
uint8_t b[4];
uint8_t nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = SET_SPEED; // 128-step speed control byte
b[nB++] = speedCode; // for encoding see setThrottle
DCCWaveform::mainTrack.schedulePacket(b, nB, 0);
}
void DCC::setFunction(int cab, byte byte1) {
uint8_t b[3];
uint8_t nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = (byte1 | 0x80) & 0xBF;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4); // Repeat the packet four times
}
void DCC::setFunction(int cab, byte byte1, byte byte2) {
byte b[4];
byte nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = (byte1 | 0xDE) & 0xDF; // for safety this guarantees that first byte will either be 0xDE (for F13-F20) or 0xDF (for F21-F28)
b[nB++] = byte2;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4); // Repeat the packet four times
}
void DCC::setAccessory(int address, byte number, bool activate) {
byte b[2];
b[0] = address % 64 + 128; // first byte is of the form 10AAAAAA, where AAAAAA represent 6 least signifcant bits of accessory address
b[1] = ((((address / 64) % 8) << 4) + (number % 4 << 1) + activate % 2) ^ 0xF8; // second byte is of the form 1AAACDDD, where C should be 1, and the least significant D represent activate/deactivate
DCCWaveform::mainTrack.schedulePacket(b, 2, 4); // Repeat the packet four times
}
void DCC::writeCVByteMain(int cab, int cv, byte bValue) {
byte b[5];
byte nB = 0;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BYTE_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = bValue;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
void DCC::writeCVBitMain(int cab, int cv, byte bNum, bool bValue) {
byte b[5];
byte nB = 0;
bValue = bValue % 2;
bNum = bNum % 8;
if (cab > 127)
b[nB++] = highByte(cab) | 0xC0; // convert train number into a two-byte address
b[nB++] = lowByte(cab);
b[nB++] = cv1(WRITE_BIT_MAIN, cv); // any CV>1023 will become modulus(1024) due to bit-mask of 0x03
b[nB++] = cv2(cv);
b[nB++] = WRITE_BIT | (bValue?BIT_ON:BIT_OFF) | bNum;
DCCWaveform::mainTrack.schedulePacket(b, nB, 4);
}
bool DCC::writeCVByte(int cv, byte bValue) {
uint8_t message[] = {cv1(WRITE_BYTE, cv), cv2(cv), bValue};
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), 6); // NMRA recommends 6 write or reset packets for decoder recovery time
return verifyCVByte(cv, bValue);
}
bool DCC::verifyCVByte(int cv, byte value) {
byte message[] = { cv1(VERIFY_BYTE, cv), cv2(cv), value};
return DCCWaveform::progTrack.schedulePacketWithAck(message, sizeof(message), 5);
}
bool DCC::writeCVBit(int cv, byte bNum, bool bValue) {
if (bNum>=8) return false;
byte instruction=WRITE_BIT | bValue?BIT_ON:BIT_OFF | bNum;
byte message[] = {cv1(BIT_MANIPULATE, cv), cv2(cv), instruction };
DCCWaveform::progTrack.schedulePacket(message, sizeof(message), 6); // NMRA recommends 6 write or reset packets for decoder recovery time
return verifyCVBit(cv, bNum, bValue);
}
bool DCC::verifyCVBit(int cv, byte bNum, bool bValue) {
if (bNum>=8) return false;
byte instruction=VERIFY_BIT | bValue?BIT_ON:BIT_OFF | bNum;
byte message[] = {cv1(BIT_MANIPULATE, cv), cv2(cv), instruction };
return DCCWaveform::progTrack.schedulePacketWithAck(message, sizeof(message), 5); // NMRA recommends 6 write or reset packets for decoder recovery time
}
int DCC::readCVBit(int cv, byte bNum) {
if (bNum>=8) return -1;
if (verifyCVBit(cv, bNum,true)) return 1;
// failed verify might be a zero, or an error so must check again
if (verifyCVBit(cv, bNum,false)) return 0;
return -1;
}
int DCC::readCV(int cv) {
byte value = 0;
// get each bit individually by validating against a one.
for (int bNum = 0; bNum < 8; bNum++) {
value += verifyCVBit(cv,bNum,true) << bNum;
}
return verifyCVByte(cv, value) ? value : -1;
}
void DCC::loop() {
DCCWaveform::loop(); // powwer overload checks
// if the main track transmitter still has a pending packet, skip this loop.
if ( DCCWaveform::mainTrack.packetPending) return;
// each time around the Arduino loop, we resend a loco speed packet reminder
for (; nextLoco < MAX_LOCOS; nextLoco++) {
if (speedTable[nextLoco].loco > 0) {
setThrottle2(speedTable[nextLoco].loco, speedTable[nextLoco].speedCode);
nextLoco++;
return;
}
}
for (nextLoco = 0; nextLoco < MAX_LOCOS; nextLoco++) {
if (speedTable[nextLoco].loco > 0) {
setThrottle2(speedTable[nextLoco].loco, speedTable[nextLoco].speedCode);
nextLoco++;
return;
}
}
}
int DCC::getLocoId() {
switch (readCVBit(29,5)) {
case 1:
// long address : get CV#17 and CV#18
{
int cv17=readCV(17);
if (cv17<0) break;
int cv18=readCV(18);
if (cv18<0) break;
return cv18 + ((cv17 - 192) <<8);
}
case 0: // short address in CV1
return readCV(1);
default: // No response or loco
break;
}
return -1;
}
///// Private helper functions below here /////////////////////
byte DCC::cv1(byte opcode, int cv) {
cv--;
return (highByte(cv) & (byte)0x03) | opcode;
}
byte DCC::cv2(int cv) {
cv--;
return lowByte(cv);
}
void DCC::updateLocoReminder(int loco, byte speedCode) {
// determine speed reg for this loco
int reg;
int firstEmpty = MAX_LOCOS;
for (reg = 0; reg < MAX_LOCOS; reg++) {
if (speedTable[reg].loco == loco) break;
if (speedTable[reg].loco == 0 && firstEmpty == MAX_LOCOS) firstEmpty = reg;
}
if (reg == MAX_LOCOS) reg = firstEmpty;
if (reg >= MAX_LOCOS) {
DIAG(F("\nToo many locos\n"));
return;
}
speedTable[reg].loco = loco;
speedTable[reg].speedCode = speedCode;
}
DCC::LOCO DCC::speedTable[MAX_LOCOS];
int DCC::nextLoco = 0;