mirror of
https://github.com/DCC-EX/CommandStation-EX.git
synced 2025-01-12 05:41:02 +01:00
335 lines
13 KiB
C++
335 lines
13 KiB
C++
/*
|
|
* © 2024, Chris Harlow. All rights reserved.
|
|
*
|
|
* This file is part of EX-CommandStation
|
|
*
|
|
* This is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* It is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with CommandStation. If not, see <https://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
* The IO_NEOPIXEL.h device driver integrates with one or more Adafruit neopixel drivers.
|
|
* This device driver will configure the device on startup, along with
|
|
* interacting with the device for all input/output duties.
|
|
*
|
|
* To create NEOPIXEL devices, these are defined in myAutomation.h:
|
|
* (Note the device driver is included by default)
|
|
*
|
|
* HAL(NEOPIXEL,first vpin, number of pixels,mode, i2c address)
|
|
* e.g. HAL(NEOPIXEL,1000,64,NEO_RGB,0x60)
|
|
* This gives each pixel in the chain an individual vpin
|
|
* The number of pixels must match the physical pixels in the chain.
|
|
*
|
|
* This driver maintains a colour (rgb value in 5,5,5 bits only) plus an ON bit.
|
|
* This can be written/read with an analog write/read call.
|
|
* The ON bit can be set on and off with a digital write. This allows for
|
|
* a pixel to be preset a colour and then turned on and off like any other light.
|
|
*/
|
|
|
|
#ifndef IO_EX_NeoPixel_H
|
|
#define IO_EX_NeoPixel_H
|
|
|
|
#include "IODevice.h"
|
|
#include "I2CManager.h"
|
|
#include "DIAG.h"
|
|
#include "FSH.h"
|
|
|
|
|
|
// The following macros to define the Neopixel String type
|
|
// have been copied from the Adafruit Seesaw Library under the
|
|
// terms of the GPL.
|
|
// Credit to: https://github.com/adafruit/Adafruit_Seesaw
|
|
|
|
// The order of primary colors in the NeoPixel data stream can vary
|
|
// among device types, manufacturers and even different revisions of
|
|
// the same item. The third parameter to the seesaw_NeoPixel
|
|
// constructor encodes the per-pixel byte offsets of the red, green
|
|
// and blue primaries (plus white, if present) in the data stream --
|
|
// the following #defines provide an easier-to-use named version for
|
|
// each permutation. e.g. NEO_GRB indicates a NeoPixel-compatible
|
|
// device expecting three bytes per pixel, with the first byte
|
|
// containing the green value, second containing red and third
|
|
// containing blue. The in-memory representation of a chain of
|
|
// NeoPixels is the same as the data-stream order; no re-ordering of
|
|
// bytes is required when issuing data to the chain.
|
|
|
|
// Bits 5,4 of this value are the offset (0-3) from the first byte of
|
|
// a pixel to the location of the red color byte. Bits 3,2 are the
|
|
// green offset and 1,0 are the blue offset. If it is an RGBW-type
|
|
// device (supporting a white primary in addition to R,G,B), bits 7,6
|
|
// are the offset to the white byte...otherwise, bits 7,6 are set to
|
|
// the same value as 5,4 (red) to indicate an RGB (not RGBW) device.
|
|
// i.e. binary representation:
|
|
// 0bWWRRGGBB for RGBW devices
|
|
// 0bRRRRGGBB for RGB
|
|
|
|
// RGB NeoPixel permutations; white and red offsets are always same
|
|
// Offset: W R G B
|
|
#define NEO_RGB ((0 << 6) | (0 << 4) | (1 << 2) | (2))
|
|
#define NEO_RBG ((0 << 6) | (0 << 4) | (2 << 2) | (1))
|
|
#define NEO_GRB ((1 << 6) | (1 << 4) | (0 << 2) | (2))
|
|
#define NEO_GBR ((2 << 6) | (2 << 4) | (0 << 2) | (1))
|
|
#define NEO_BRG ((1 << 6) | (1 << 4) | (2 << 2) | (0))
|
|
#define NEO_BGR ((2 << 6) | (2 << 4) | (1 << 2) | (0))
|
|
|
|
// RGBW NeoPixel permutations; all 4 offsets are distinct
|
|
// Offset: W R G B
|
|
#define NEO_WRGB ((0 << 6) | (1 << 4) | (2 << 2) | (3))
|
|
#define NEO_WRBG ((0 << 6) | (1 << 4) | (3 << 2) | (2))
|
|
#define NEO_WGRB ((0 << 6) | (2 << 4) | (1 << 2) | (3))
|
|
#define NEO_WGBR ((0 << 6) | (3 << 4) | (1 << 2) | (2))
|
|
#define NEO_WBRG ((0 << 6) | (2 << 4) | (3 << 2) | (1))
|
|
#define NEO_WBGR ((0 << 6) | (3 << 4) | (2 << 2) | (1))
|
|
|
|
#define NEO_RWGB ((1 << 6) | (0 << 4) | (2 << 2) | (3))
|
|
#define NEO_RWBG ((1 << 6) | (0 << 4) | (3 << 2) | (2))
|
|
#define NEO_RGWB ((2 << 6) | (0 << 4) | (1 << 2) | (3))
|
|
#define NEO_RGBW ((3 << 6) | (0 << 4) | (1 << 2) | (2))
|
|
#define NEO_RBWG ((2 << 6) | (0 << 4) | (3 << 2) | (1))
|
|
#define NEO_RBGW ((3 << 6) | (0 << 4) | (2 << 2) | (1))
|
|
|
|
#define NEO_GWRB ((1 << 6) | (2 << 4) | (0 << 2) | (3))
|
|
#define NEO_GWBR ((1 << 6) | (3 << 4) | (0 << 2) | (2))
|
|
#define NEO_GRWB ((2 << 6) | (1 << 4) | (0 << 2) | (3))
|
|
#define NEO_GRBW ((3 << 6) | (1 << 4) | (0 << 2) | (2))
|
|
#define NEO_GBWR ((2 << 6) | (3 << 4) | (0 << 2) | (1))
|
|
#define NEO_GBRW ((3 << 6) | (2 << 4) | (0 << 2) | (1))
|
|
|
|
#define NEO_BWRG ((1 << 6) | (2 << 4) | (3 << 2) | (0))
|
|
#define NEO_BWGR ((1 << 6) | (3 << 4) | (2 << 2) | (0))
|
|
#define NEO_BRWG ((2 << 6) | (1 << 4) | (3 << 2) | (0))
|
|
#define NEO_BRGW ((3 << 6) | (1 << 4) | (2 << 2) | (0))
|
|
#define NEO_BGWR ((2 << 6) | (3 << 4) | (1 << 2) | (0))
|
|
#define NEO_BGRW ((3 << 6) | (2 << 4) | (1 << 2) | (0))
|
|
|
|
// If 400 KHz support is enabled, the third parameter to the constructor
|
|
// requires a 16-bit value (in order to select 400 vs 800 KHz speed).
|
|
// If only 800 KHz is enabled (as is default on ATtiny), an 8-bit value
|
|
// is sufficient to encode pixel color order, saving some space.
|
|
|
|
#define NEO_KHZ800 0x0000 // 800 KHz datastream
|
|
#define NEO_KHZ400 0x0100 // 400 KHz datastream
|
|
|
|
/////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
/*
|
|
* IODevice subclass for NeoPixel.
|
|
*/
|
|
|
|
class NeoPixel : public IODevice {
|
|
public:
|
|
|
|
static void create(VPIN vpin, int nPins, uint16_t mode=(NEO_GRB | NEO_KHZ800), I2CAddress i2cAddress=0x60) {
|
|
if (checkNoOverlap(vpin, nPins, i2cAddress)) new NeoPixel(vpin, nPins, mode, i2cAddress);
|
|
}
|
|
|
|
private:
|
|
|
|
static const byte SEESAW_NEOPIXEL_BASE=0x0E;
|
|
static const byte SEESAW_NEOPIXEL_STATUS = 0x00;
|
|
static const byte SEESAW_NEOPIXEL_PIN = 0x01;
|
|
static const byte SEESAW_NEOPIXEL_SPEED = 0x02;
|
|
static const byte SEESAW_NEOPIXEL_BUF_LENGTH = 0x03;
|
|
static const byte SEESAW_NEOPIXEL_BUF=0x04;
|
|
static const byte SEESAW_NEOPIXEL_SHOW=0x05;
|
|
|
|
// all adafruit examples say this pin. Presumably its hard wired
|
|
// in the adapter anyway.
|
|
static const byte SEESAW_PIN15 = 15;
|
|
|
|
// Constructor
|
|
NeoPixel(VPIN firstVpin, int nPins, uint16_t mode, I2CAddress i2cAddress) {
|
|
_firstVpin = firstVpin;
|
|
_nPins=nPins;
|
|
_I2CAddress = i2cAddress;
|
|
|
|
// calculate the offsets into the seesaw buffer for each colour depending
|
|
// on the pixel strip type passed in mode.
|
|
|
|
_redOffset=4+(mode >> 4 & 0x03);
|
|
_greenOffset=4+(mode >> 2 & 0x03);
|
|
_blueOffset=4+(mode & 0x03);
|
|
if (4+(mode >>6 & 0x03) == _redOffset) _bytesPerPixel=3;
|
|
else _bytesPerPixel=4; // string has a white byte.
|
|
|
|
_kHz800=(mode & NEO_KHZ400)==0;
|
|
_showPendimg=false;
|
|
|
|
// Each pixel requires 3 bytes RGB memory.
|
|
// Although the driver device can remember this, it cant do off/on without
|
|
// forgetting what the on colour was!
|
|
pixelBuffer=(RGB *) malloc(_nPins*sizeof(RGB));
|
|
stateBuffer=(byte *) calloc((_nPins+7)/8,sizeof(byte)); // all pixels off
|
|
if (pixelBuffer==nullptr || stateBuffer==nullptr) {
|
|
DIAG(F("NeoPixel I2C:%s not enough RAM"), _I2CAddress.toString());
|
|
return;
|
|
}
|
|
// preset all pins to white so a digital on/off will do something even if no colour set.
|
|
memset(pixelBuffer,0xFF,_nPins*sizeof(RGB));
|
|
addDevice(this);
|
|
}
|
|
|
|
void _begin() {
|
|
|
|
// Initialise Neopixel device
|
|
I2CManager.begin();
|
|
if (!I2CManager.exists(_I2CAddress)) {
|
|
DIAG(F("NeoPixel I2C:%s device not found"), _I2CAddress.toString());
|
|
_deviceState = DEVSTATE_FAILED;
|
|
return;
|
|
}
|
|
|
|
byte speedBuffer[]={SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_SPEED,_kHz800};
|
|
I2CManager.write(_I2CAddress, speedBuffer, sizeof(speedBuffer));
|
|
|
|
// In the driver there are 3 of 4 byts per pixel
|
|
auto numBytes=_bytesPerPixel * _nPins;
|
|
byte setbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_BUF_LENGTH,
|
|
(byte)(numBytes >> 8), (byte)(numBytes & 0xFF)};
|
|
I2CManager.write(_I2CAddress, setbuffer, sizeof(setbuffer));
|
|
|
|
const byte pinbuffer[] = {SEESAW_NEOPIXEL_BASE, SEESAW_NEOPIXEL_PIN,SEESAW_PIN15};
|
|
I2CManager.write(_I2CAddress, pinbuffer, sizeof(pinbuffer));
|
|
|
|
for (auto pin=0;pin<_nPins;pin++) transmit(pin);
|
|
_display();
|
|
}
|
|
|
|
// loop called by HAL supervisor
|
|
void _loop(unsigned long currentMicros) override {
|
|
(void)currentMicros;
|
|
if (!_showPendimg) return;
|
|
byte showBuffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_SHOW};
|
|
I2CManager.write(_I2CAddress,showBuffer,sizeof(showBuffer));
|
|
_showPendimg=false;
|
|
}
|
|
|
|
|
|
// read back pixel on/off
|
|
int _read(VPIN vpin) override {
|
|
if (_deviceState == DEVSTATE_FAILED) return 0;
|
|
return isPixelOn(vpin-_firstVpin);
|
|
}
|
|
|
|
// Write digital value. Sets pixel on or off
|
|
void _write(VPIN vpin, int value) override {
|
|
if (_deviceState == DEVSTATE_FAILED) return;
|
|
auto pixel=vpin-_firstVpin;
|
|
if (value) {
|
|
if (isPixelOn(pixel)) return;
|
|
setPixelOn(pixel);
|
|
}
|
|
else { // set off
|
|
if (!isPixelOn(pixel)) return;
|
|
setPixelOff(pixel);
|
|
}
|
|
transmit(pixel);
|
|
}
|
|
|
|
VPIN _writeRange(VPIN vpin,int value, int count) {
|
|
// using write range cuts out the constant vpin to driver lookup so
|
|
// we can update multiple pixels much faster.
|
|
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
|
|
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
|
|
_write(vpin,value);
|
|
vpin++;
|
|
}
|
|
return nextVpin; // next pin we cant
|
|
}
|
|
// Write analogue value.
|
|
// The convoluted parameter mashing here is to allow passing the RGB and on/off
|
|
// information through the generic HAL _writeAnalog interface which was originally
|
|
// designed for servos and short integers
|
|
void _writeAnalogue(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B) override {
|
|
if (_deviceState == DEVSTATE_FAILED) return;
|
|
RGB newColour={(byte)((colour_RG>>8) & 0xFF), (byte)(colour_RG & 0xFF), (byte)(colour_B & 0xFF)};
|
|
auto pixel=vpin-_firstVpin;
|
|
if (pixelBuffer[pixel]==newColour && isPixelOn(pixel)==(bool)onoff) return; // no change
|
|
|
|
if (onoff) setPixelOn(pixel); else setPixelOff(pixel);
|
|
pixelBuffer[pixel]=newColour;
|
|
transmit(pixel);
|
|
}
|
|
VPIN _writeAnalogueRange(VPIN vpin, int colour_RG, uint8_t onoff, uint16_t colour_B, int count) override {
|
|
// using write range cuts out the constant vpin to driver lookup so
|
|
VPIN nextVpin=vpin + (count>_nPins ? _nPins : count);
|
|
if (_deviceState != DEVSTATE_FAILED) while(vpin<nextVpin) {
|
|
_writeAnalogue(vpin,colour_RG, onoff,colour_B);
|
|
vpin++;
|
|
}
|
|
return nextVpin; // next pin we cant
|
|
}
|
|
|
|
// Display device information and status.
|
|
void _display() override {
|
|
DIAG(F("NeoPixel I2C:%s Vpins %u-%u %S"),
|
|
_I2CAddress.toString(),
|
|
(int)_firstVpin, (int)_firstVpin+_nPins-1,
|
|
_deviceState == DEVSTATE_FAILED ? F("OFFLINE") : F(""));
|
|
}
|
|
|
|
|
|
|
|
bool isPixelOn(int16_t pixel) {return stateBuffer[pixel/8] & (0x80>>(pixel%8));}
|
|
void setPixelOn(int16_t pixel) {stateBuffer[pixel/8] |= (0x80>>(pixel%8));}
|
|
void setPixelOff(int16_t pixel) {stateBuffer[pixel/8] &= ~(0x80>>(pixel%8));}
|
|
|
|
// Helper function for error handling
|
|
void reportError(uint8_t status, bool fail=true) {
|
|
DIAG(F("NeoPixel I2C:%s Error:%d (%S)"), _I2CAddress.toString(),
|
|
status, I2CManager.getErrorMessage(status));
|
|
if (fail)
|
|
_deviceState = DEVSTATE_FAILED;
|
|
}
|
|
|
|
|
|
void transmit(uint16_t pixel) {
|
|
byte buffer[]={SEESAW_NEOPIXEL_BASE,SEESAW_NEOPIXEL_BUF,0x00,0x00,0x00,0x00,0x00};
|
|
uint16_t offset= pixel * _bytesPerPixel;
|
|
buffer[2]=(byte)(offset>>8);
|
|
buffer[3]=(byte)(offset & 0xFF);
|
|
|
|
if (isPixelOn(pixel)) {
|
|
auto colour=pixelBuffer[pixel];
|
|
buffer[_redOffset]=colour.red;
|
|
buffer[_greenOffset]=colour.green;
|
|
buffer[_blueOffset]=colour.blue;
|
|
} // else leave buffer black (in buffer preset to zeros above)
|
|
|
|
// Transmit pixel to driver
|
|
I2CManager.write(_I2CAddress,buffer,4 +_bytesPerPixel);
|
|
_showPendimg=true;
|
|
|
|
}
|
|
struct RGB {
|
|
byte red;
|
|
byte green;
|
|
byte blue;
|
|
bool operator==(const RGB& other) const {
|
|
return red == other.red && green == other.green && blue == other.blue;
|
|
}
|
|
};
|
|
|
|
RGB* pixelBuffer = nullptr;
|
|
byte* stateBuffer = nullptr; // 1 bit per pixel
|
|
bool _showPendimg;
|
|
|
|
// mapping of RGB onto pixel buffer for seesaw.
|
|
byte _bytesPerPixel;
|
|
byte _redOffset;
|
|
byte _greenOffset;
|
|
byte _blueOffset;
|
|
bool _kHz800;
|
|
};
|
|
|
|
#endif
|