1
0
mirror of https://github.com/DCC-EX/CommandStation-EX.git synced 2025-01-11 21:31:02 +01:00
CommandStation-EX/DCCEXParser.cpp
2020-07-03 00:19:59 +02:00

381 lines
12 KiB
C++

#include "StringFormatter.h"
#include "DCCEXParser.h"
#include "DCC.h"
#include "DCCWaveform.h"
#include "Turnouts.h"
#include "Outputs.h"
#include "Sensors.h"
#include "EEStore.h"
#include "DIAG.h"
const char VERSION[] PROGMEM ="99.666";
const int HASH_KEYWORD_PROG=-29718;
const int HASH_KEYWORD_MAIN=11339;
int DCCEXParser::stashP[MAX_PARAMS];
bool DCCEXParser::stashBusy;
Print & DCCEXParser::stashStream=Serial; // keep compiler happy but ovevride in constructor
// This is a JMRI command parser, one instance per incoming stream
// It doesnt know how the string got here, nor how it gets back.
// It knows nothing about hardware or tracks... it just parses strings and
// calls the corresponding DCC api.
// Non-DCC things like turnouts, pins and sensors are handled in additional JMRI interface classes.
DCCEXParser::DCCEXParser() {}
void DCCEXParser::flush() {
DIAG(F("\nBuffer flush"));
bufferLength=0;
inCommandPayload=false;
}
void DCCEXParser::loop(Stream & stream) {
while(stream.available()) {
if (bufferLength==MAX_BUFFER) {
flush();
}
char ch = stream.read();
if (ch == '<') {
inCommandPayload = true;
bufferLength=0;
buffer[0]='\0';
}
else if (ch == '>') {
buffer[bufferLength]='\0';
parse( stream, buffer, false); // Parse this allowing async responses
inCommandPayload = false;
break;
} else if(inCommandPayload) {
buffer[bufferLength++]= ch;
}
}
}
int DCCEXParser::splitValues( int result[MAX_PARAMS], const byte * cmd) {
byte state=1;
byte parameterCount=0;
int runningValue=0;
const byte * remainingCmd=cmd+1; // skips the opcode
bool signNegative=false;
// clear all parameters in case not enough found
for (int i=0;i<MAX_PARAMS;i++) result[i]=0;
while(parameterCount<MAX_PARAMS) {
byte hot=*remainingCmd;
switch (state) {
case 1: // skipping spaces before a param
if (hot==' ') break;
if (hot == '\0' || hot=='>') return parameterCount;
state=2;
continue;
case 2: // checking sign
signNegative=false;
runningValue=0;
state=3;
if (hot!='-') continue;
signNegative=true;
break;
case 3: // building a parameter
if (hot>='0' && hot<='9') {
runningValue=10*runningValue+(hot-'0');
break;
}
if (hot>='A' && hot<='Z') {
// Since JMRI got modified to send keywords in some rare cases, we need this
// Super Kluge to turn keywords into a hash value that can be recognised later
runningValue = ((runningValue << 5) + runningValue) ^ hot;
break;
}
result[parameterCount] = runningValue * (signNegative ?-1:1);
parameterCount++;
state=1;
continue;
}
remainingCmd++;
}
return parameterCount;
}
FILTER_CALLBACK DCCEXParser::filterCallback=0;
void DCCEXParser::setFilter(FILTER_CALLBACK filter) {
filterCallback=filter;
}
// See documentation on DCC class for info on this section
void DCCEXParser::parse(Print & stream, const byte *com, bool banAsync) {
DIAG(F("\nPARSING:%s\n"),com);
asyncBanned=banAsync;
(void) EEPROM; // tell compiler not to warn thi is unused
int p[MAX_PARAMS];
byte params=splitValues(p, com);
if (com[0]=='<') com++;
byte opcode=com[0];
if (filterCallback) filterCallback(stream,opcode,params,p);
// Functions return from this switch if complete, break from switch implies error <X> to send
switch(opcode) {
case '\0': return; // filterCallback asked us to ignore
case 't': // THROTTLE <t REGISTER CAB SPEED DIRECTION>
DCC::setThrottle(p[1],p[2],p[3]);
StringFormatter::send(stream,F("<T %d %d %d>"), p[0], p[2],p[3]);
return;
case 'f': // FUNCTION <f CAB BYTE1 [BYTE2]>
if (parsef(stream,params,p)) return;
break;
case 'a': // ACCESSORY <a ADDRESS SUBADDRESS ACTIVATE>
if(p[2] != (p[2] & 1)) return;
DCC::setAccessory(p[0],p[1],p[2]==1);
return;
case 'T': // TURNOUT <T ...>
if (parseT(stream,params,p)) return;
break;
case 'Z': // OUTPUT <Z ...>
if (parseZ(stream,params,p)) return;
break;
case 'S': // SENSOR <S ...>
if (parseS(stream,params,p)) return;
break;
case 'w': // WRITE CV on MAIN <w CAB CV VALUE>
DCC::writeCVByteMain(p[0],p[1],p[2]);
return;
case 'b': // WRITE CV BIT ON MAIN <b CAB CV BIT VALUE>
DCC::writeCVBitMain(p[0],p[1],p[2],p[3]);
return;
case 'W': // WRITE CV ON PROG <W CV VALUE CALLBACKNUM CALLBACKSUB>
if (!stashCallback(stream,p)) break;
DCC::writeCVByte(p[0],p[1],callback_W);
return;
case 'B': // WRITE CV BIT ON PROG <B CV BIT VALUE CALLBACKNUM CALLBACKSUB>
if (!stashCallback(stream,p)) break;
DCC::writeCVBit(p[0],p[1],p[2],callback_B);
return;
case 'R': // READ CV ON PROG <R CV CALLBACKNUM CALLBACKSUB>
if (!stashCallback(stream,p)) break;
DCC::readCV(p[0],callback_R);
return;
case '1': // POWERON <1 [MAIN|PROG]>
case '0': // POWEROFF <0 [MAIN | PROG] >
if (params>1) break;
{
POWERMODE mode= opcode=='1'?POWERMODE::ON:POWERMODE::OFF;
if (params==0) {
DCCWaveform::mainTrack.setPowerMode(mode);
DCCWaveform::progTrack.setPowerMode(mode);
StringFormatter::send(stream,F("<p%c>"),opcode);
return;
}
if (p[0]==HASH_KEYWORD_MAIN) {
DCCWaveform::mainTrack.setPowerMode(mode);
StringFormatter::send(stream,F("<p%c MAIN>"),opcode);
return;
}
if (p[0]==HASH_KEYWORD_PROG) {
DCCWaveform::progTrack.setPowerMode(mode);
StringFormatter::send(stream,F("<p%c PROG>"),opcode);
return;
}
DIAG(F("keyword hash=%d\n"),p[0]);
break;
}
return;
case 'c': // READ CURRENT <c>
StringFormatter::send(stream,F("<a %d>"), DCCWaveform::mainTrack.getLastCurrent());
return;
case 'Q': // SENSORS <Q>
Sensor::status(stream);
break;
case 's': // <s>
StringFormatter::send(stream,F("<p%d>"),DCCWaveform::mainTrack.getPowerMode()==POWERMODE::ON );
StringFormatter::send(stream,F("<iDCC-Asbelos BASE STATION FOR ARDUINO / %S: V-%S %s/%s>"), BOARD_NAME, VERSION, __DATE__, __TIME__ );
// TODO Send stats of speed reminders table
// TODO send status of turnouts etc etc
return;
case 'E': // STORE EPROM <E>
EEStore::store();
StringFormatter::send(stream,F("<e %d %d %d>"), EEStore::eeStore->data.nTurnouts, EEStore::eeStore->data.nSensors, EEStore::eeStore->data.nOutputs);
return;
case 'e': // CLEAR EPROM <e>
EEStore::clear();
StringFormatter::send(stream, F("<O>"));
return;
case ' ': // < >
StringFormatter::send(stream,F("\n"));
return;
case 'D': // < >
DCC::setDebug(p[0]==1);
DIAG(F("\nDCC DEBUG MODE %d"),p[0]==1);
return;
case '#': // NUMBER OF LOCOSLOTS <#>
StringFormatter::send(stream,F("<# %d>"), MAX_LOCOS);
return;
default: //anything else will drop out to <X>
break;
} // end of opcode switch
// Any fallout here sends an <X>
StringFormatter::send(stream, F("<X>"));
}
bool DCCEXParser::parseZ( Print & stream,int params, int p[]){
switch (params) {
case 2: // <Z ID ACTIVATE>
{
Output * o=Output::get(p[0]);
if(o==NULL) return false;
o->activate(p[1]);
StringFormatter::send(stream,F("<Y %d %d>"), p[0],p[1]);
}
return true;
case 3: // <Z ID PIN INVERT>
Output::create(p[0],p[1],p[2],1);
return true;
case 1: // <Z ID>
return Output::remove(p[0]);
case 0: // <Z>
return Output::showAll(stream);
default:
return false;
}
}
//===================================
bool DCCEXParser::parsef(Print & stream, int params, int p[]) {
// JMRI sends this info in DCC message format but it's not exactly
// convenient for other processing
if (params==2) {
byte groupcode=p[1] & 0xE0;
if (groupcode == 0x80) {
byte normalized= (p[1]<<1 & 0x1e ) | (p[1]>>4 & 0x01);
funcmap(p[0],normalized,0,4);
}
else if (groupcode == 0xC0) {
funcmap(p[0],p[1],5,8);
}
else if (groupcode == 0xA0) {
funcmap(p[0],p[1],9,12);
}
}
if (params==3) {
if (p[1]==222) funcmap(p[0],p[2],13,20);
else if (p[1]==223) funcmap(p[0],p[2],21,28);
}
(void)stream;// NO RESPONSE
return true;
}
void DCCEXParser::funcmap(int cab, byte value, byte fstart, byte fstop) {
for (int i=fstart;i<=fstop;i++) {
DCC::setFn(cab, i, value & 1);
value>>=1;
}
}
//===================================
bool DCCEXParser::parseT(Print & stream, int params, int p[]) {
switch(params){
case 0: // <T>
return (Turnout::showAll(stream)); break;
case 1: // <T id>
if (!Turnout::remove(p[0])) return false;
StringFormatter::send(stream,F("<O>"));
return true;
case 2: // <T id 0|1>
if (!Turnout::activate(p[0],p[1])) return false;
Turnout::show(stream,p[0]);
return true;
case 3: // <T id addr subaddr>
if (!Turnout::create(p[0],p[1],p[2])) return false;
StringFormatter::send(stream,F("<O>"));
return true;
default:
return false; // will <x>
}
}
bool DCCEXParser::parseS( Print & stream,int params, int p[]) {
switch(params){
case 3: // argument is string with id number of sensor followed by a pin number and pullUp indicator (0=LOW/1=HIGH)
Sensor::create(p[0],p[1],p[2]);
return true;
case 1: // argument is a string with id number only
if (Sensor::remove(p[0])) return true;
break;
case -1: // no arguments
Sensor::show(stream);
return true;
default: // invalid number of arguments
break;
}
return false;
}
// CALLBACKS must be static
bool DCCEXParser::stashCallback(Print & stream,int p[MAX_PARAMS]) {
if (stashBusy || asyncBanned) return false;
stashBusy=true;
stashStream=stream;
memcpy(stashP,p,MAX_PARAMS*sizeof(p[0]));
return true;
}
void DCCEXParser::callback_W(int result) {
StringFormatter::send(stashStream,F("<r%d|%d|%d %d>"), stashP[2], stashP[3],stashP[0],result==1?stashP[1]:-1);
stashBusy=false;
}
void DCCEXParser::callback_B(int result) {
StringFormatter::send(stashStream,F("<r%d|%d|%d %d %d>"), stashP[3],stashP[4], stashP[0],stashP[1],result==1?stashP[2]:-1);
stashBusy=false;
}
void DCCEXParser::callback_R(int result) {
StringFormatter::send(stashStream,F("<r%d|%d|%d %d>"),stashP[1],stashP[2],stashP[0],result);
stashBusy=false;
}